Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum many-body models with cold atoms coupled to photonic crystals

Abstract

Using cold atoms to simulate strongly interacting quantum systems is an exciting frontier of physics. However, because atoms are nominally neutral point particles, this limits the types of interaction that can be produced. We propose to use the powerful new platform of cold atoms trapped near nanophotonic systems to extend these limits, enabling a novel quantum material in which atomic spin degrees of freedom, motion and photons strongly couple over long distances. In this system, an atom trapped near a photonic crystal seeds a localized, tunable cavity mode around the atomic position. We find that this effective cavity facilitates interactions with other atoms within the cavity length, in a way that can be made robust against realistic imperfections. Finally, we show that such phenomena should be accessible using one-dimensional photonic crystal waveguides in which coupling to atoms has already been experimentally demonstrated.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: From cavity-QED to atom-induced cavities in photonic crystals.
Figure 2: Effective cavity mode properties.
Figure 3: Comparison of the single-band model with numerical calculations.
Figure 4: Designing interaction potentials.

References

  1. Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).

    ADS  Article  Google Scholar 

  2. Batrouni, G. G., Scalettar, R. T., Zimanyi, G. T. & Kampf, A. P. Supersolids in the Bose–Hubbard Hamiltonian. Phys. Rev. Lett. 74, 2527–2530 (1995).

    ADS  Article  Google Scholar 

  3. Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934).

    ADS  Article  Google Scholar 

  4. Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nature Phys. 2, 341–347 (2006).

    ADS  Article  Google Scholar 

  5. Campa, A., Dauxois, T. & Ruffo, S. Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480, 57–159 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  6. Shahmoon, E., Mazets, I. & Kurizki, G. Non-additivity in laser-illuminated many-atom systems. Opt. Lett. 39, 3674–3677 (2014).

    ADS  Article  Google Scholar 

  7. Hauke, P. & Tagliacozzo, L. Spread of correlations in long-range interacting quantum systems. Phys. Rev. Lett. 111, 207202 (2013).

    ADS  Article  Google Scholar 

  8. Richerme, P. et al. Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511, 198–201 (2014).

    ADS  Article  Google Scholar 

  9. Jurcevic, P. et al. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature 511, 202–205 (2014).

    ADS  Article  Google Scholar 

  10. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    ADS  Article  Google Scholar 

  11. Griesmaier, A., Werner, J., Hensler, S., Stuhler, J. & Pfau, T. Bose–Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005).

    ADS  Article  Google Scholar 

  12. Lu, M., Burdick, N. Q., Youn, S. H. & Lev, B. L. Strongly dipolar Bose–Einstein condensate of dysprosium. Phys. Rev. Lett. 107, 190401 (2011).

    ADS  Article  Google Scholar 

  13. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    ADS  Article  Google Scholar 

  14. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    ADS  Article  Google Scholar 

  15. Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006).

    ADS  Article  Google Scholar 

  16. Vetsch, E. et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010).

    ADS  Article  Google Scholar 

  17. Goban, A. et al. Demonstration of a state-insensitive, compensated nanofiber trap. Phys. Rev. Lett. 109, 033603 (2012).

    ADS  Article  Google Scholar 

  18. Thompson, J. D. et al. Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013).

    ADS  Article  Google Scholar 

  19. Goban, A. et al. Atom–light interactions in photonic crystals. Nature Commun. 5, 3808 (2014).

    ADS  Article  Google Scholar 

  20. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Article  Google Scholar 

  21. Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nature Phys. 2, 856–861 (2006).

    ADS  Article  Google Scholar 

  22. Hartmann, M. J., Brandao, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nature Phys. 2, 849–855 (2006).

    ADS  Article  Google Scholar 

  23. Angelakis, D. G., Santos, M. F. & Bose, S. Photon-blockade-induced Mott transitions and xy spin models in coupled cavity arrays. Phys. Rev. A 76, 031805 (2007).

    ADS  Article  Google Scholar 

  24. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2008).

    MATH  Google Scholar 

  25. Kurizki, G. Two-atom resonant radiative coupling in photonic band structures. Phys. Rev. A 42, 2915–2924 (1990).

    ADS  Article  Google Scholar 

  26. John, S. & Wang, J. Quantum optics of localized light in a photonic band gap. Phys. Rev. B 43, 12772–12789 (1991).

    ADS  Article  Google Scholar 

  27. John, S. & Wang, J. Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms. Phys. Rev. Lett. 64, 2418–2421 (1990).

    ADS  Article  Google Scholar 

  28. Bay, S., Lambropoulos, P. & Mølmer, K. Atom–atom interaction in strongly modified reservoirs. Phys. Rev. A 55, 1485–1496 (1997).

    ADS  Article  Google Scholar 

  29. Lambropoulos, P., Nikolopoulos, G. M., Nielsen, T. R. & Bay, S. Fundamental quantum optics in structured reservoirs. Rep. Prog. Phys. 63, 455 (2000).

    ADS  Article  Google Scholar 

  30. Shahmoon, E. & Kurizki, G. Nonradiative interaction and entanglement between distant atoms. Phys. Rev. A 87, 033831 (2013).

    ADS  Article  Google Scholar 

  31. González-Tudela, A., Hung, C.-L., Chang, D. E., Cirac, J. I. & Kimble, H. J. Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals. Nature Photon. http://dx.doi.org/10.1038/nphoton.2015.54 (2015).

  32. Yu, S.-P. et al. Nanowire photonic crystal waveguides for single-atom trapping and strong light–matter interactions. Appl. Phys. Lett. 104, 111103 (2014).

    ADS  Article  Google Scholar 

  33. Agarwal, G., Gupta, S. & Puri, R. Fundamentals of Cavity Quantum Electrodynamics (World Scientific Publishing, 1995).

    Google Scholar 

  34. Plenio, M. B., Huelga, S. F., Beige, A. & Knight, P. L. Cavity-loss-induced generation of entangled atoms. Phys. Rev. A 59, 2468–2475 (1999).

    ADS  Article  Google Scholar 

  35. Domokos, P. & Ritsch, H. Collective cooling and self-organization of atoms in a cavity. Phys. Rev. Lett. 89, 253003 (2002).

    ADS  Article  Google Scholar 

  36. Black, A. T., Chan, H. W. & Vuletić, V. Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering. Phys. Rev. Lett. 91, 203001 (2003).

    ADS  Article  Google Scholar 

  37. Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010).

    ADS  Article  Google Scholar 

  38. Hung, C.-L., Meenehan, S. M., Chang, D. E., Painter, O. & Kimble, H. J. Trapped atoms in one-dimensional photonic crystals. New J. Phys. 15, 083026 (2013).

    ADS  Article  Google Scholar 

  39. Markos, P. & Soukoulis, C. M. Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton Univ Press, 2010).

    MATH  Google Scholar 

  40. Porras, D. & Cirac, J. I. Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004).

    ADS  Article  Google Scholar 

  41. Islam, R. et al. Emergence and frustration of magnetism with variable-range interactions in a quantum simulator. Science 340, 583–587 (2013).

    ADS  Article  Google Scholar 

  42. Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    ADS  Article  Google Scholar 

  43. Mattioli, M., Dalmonte, M., Lechner, W. & Pupillo, G. Cluster Luttinger liquids of Rydberg-dressed atoms in optical lattices. Phys. Rev. Lett. 111, 165302 (2013).

    ADS  Article  Google Scholar 

  44. Basko, D. M., Aleiner, I. L. & Altshuler, B. L. On the problem of many-body localization. Preprint at http://arXiv.org/abs/cond-mat/0602510 (2006).

  45. Longo, P., Schmitteckert, P. & Busch, K. Few-photon transport in low-dimensional systems. Phys. Rev. A 83, 063828 (2011).

    ADS  Article  Google Scholar 

  46. Firstenberg, O. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013).

    ADS  Article  Google Scholar 

  47. Nayak, K. P. & Hakuta, K. Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique. Opt. Express 21, 2480–2490 (2013).

    ADS  Article  Google Scholar 

  48. Chang, D. E., Jiang, L., Gorshkov, A. V. & Kimble, H. J. Cavity QED with atomic mirrors. New J. Phys. 14, 063003 (2012).

    ADS  Article  Google Scholar 

  49. Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    ADS  Article  Google Scholar 

  50. Dung, H. T., Knöll, L. & Welsch, D.-G. Resonant dipole–dipole interaction in the presence of dispersing and absorbing surroundings. Phys. Rev. A 66, 063810 (2002).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Tagliacozzo, P. Hauke, M. Lewenstein, A. González-Tudela, J.I. Cirac, L. Jiang, J. Preskill, O. Painter, M. Lukin, J. Thompson and S. Gopalakrishnan for discussions. This work was supported by Fundacio Privada Cellex Barcelona, the MINECO Ramon y Cajal Program, the Marie Curie Career Integration Grant, the IQIM, an NSF Physics Frontiers Center, the DoD NSSEFF programme, DARPA ORCHID, AFOSR QuMPASS MURI, NSF PHY-1205729, NSF PFC at the JQI, NSF PIF, ARO, AFOSR, ARL and AFOSR MURI on Ultracold Polar Molecules.

Author information

Authors and Affiliations

Authors

Contributions

J.S.D., H.H. and C.-L.H. performed the calculations. All authors contributed ideas. J.S.D. and D.E.C. wrote the manuscript.

Corresponding author

Correspondence to J. S. Douglas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 489 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Douglas, J., Habibian, H., Hung, CL. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nature Photon 9, 326–331 (2015). https://doi.org/10.1038/nphoton.2015.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.57

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing