Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals

Subjects

Abstract

Quantum simulation with cold atoms in optical lattices is an attractive avenue for explorations of quantum many-body physics. A principal challenge in the field is to increase the energy and length scales in current set-ups, thereby reducing temperature and coherence-time requirements. Here, we present a new paradigm for high-density, two-dimensional optical lattices in photonic crystal waveguides. Specially engineered two-dimensional photonic crystals provide a practical platform to trap atoms and engineer their interactions in ways that surpass the limitations of current technologies and enable investigations of novel quantum many-body matter. Our schemes remove the constraint on the lattice constant set by the free-space optical wavelength in favour of deeply sub-wavelength atomic arrays. We further describe possibilities for atom–atom interactions mediated by photons in two-dimensional photonic crystal waveguides with energy scales several orders of magnitude larger than for exchange interactions in free-space lattices and with the capability to engineer strongly long-range interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Nanophotonic atom lattices and parameter regimes opened for many-body simulations.
Figure 2: Subwavelength atomic lattices using vacuum forces.
Figure 3: Scheme for atom trapping to enable photon-mediated interactions.
Figure 4: Atomic level structure, simplified dispersion relation and GM intensities.

References

  1. 1

    Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).

    ADS  Article  Google Scholar 

  2. 2

    Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nature Phys. 8, 264–266 (2012).

    ADS  Article  Google Scholar 

  3. 3

    Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nature Phys. 2, 341–347 (2006).

    ADS  Article  Google Scholar 

  4. 4

    Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000).

    ADS  Article  Google Scholar 

  5. 5

    Lukin, M. D. & Ĭmamoglu, A. Controlling photons using electromagnetically induced transparency. Nature 413, 273–276 (2001).

    ADS  Article  Google Scholar 

  6. 6

    Bouchet, F., Gupta, S. & Mukamel, D. Thermodynamics and dynamics of systems with long-range interactions. Physica A 389, 4389–4405 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7

    Gullans, M. et al. Nanoplasmonic lattices for ultracold atoms. Phys. Rev. Lett. 109, 235309 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Romero-Isart, O., Navau, C., Sanchez, A., Zoller, P. & Cirac, J. I. Superconducting vortex lattices for ultracold atoms. Phys. Rev. Lett. 111, 145304 (2013).

    ADS  Article  Google Scholar 

  9. 9

    Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 2011).

    Book  Google Scholar 

  10. 10

    Buhmann, S. Y. & Welsch, D.-G. Dispersion forces in macroscopic quantum electrodynamics. Prog. Quant. Electron. 31, 51–130 (2007).

    ADS  Article  Google Scholar 

  11. 11

    John, S. & Wang, J. Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms. Phys. Rev. Lett. 64, 2418–2421 (1990).

    ADS  Article  Google Scholar 

  12. 12

    Kurizki, G. Two-atom resonant radiative coupling in photonic band structures. Phys. Rev. A 42, 2915–2924 (1990).

    ADS  Article  Google Scholar 

  13. 13

    Lambropoulos, P., Nikolopoulos, G. M., Nielsen, T. R. & Bay, S. Fundamental quantum optics in structured reservoirs. Rep. Prog. Phys. 63, 455–503 (2000).

    ADS  Article  Google Scholar 

  14. 14

    Shahmoon, E. & Kurizki, G. Nonradiative interaction and entanglement between distant atoms. Phys. Rev. A 87, 033831 (2013).

    ADS  Article  Google Scholar 

  15. 15

    Vetsch, E. et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010).

    ADS  Article  Google Scholar 

  16. 16

    Goban, A. et al. Demonstration of a state-insensitive, compensated nanofiber trap. Phys. Rev. Lett. 109, 033603 (2012).

    ADS  Article  Google Scholar 

  17. 17

    Thompson, J. D. et al. Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013).

    ADS  Article  Google Scholar 

  18. 18

    Goban, A. et al. Atom–light interactions in photonic crystals. Nature Commun. 5, 3808 (2014).

    ADS  Article  Google Scholar 

  19. 19

    Yu, S.-P. et al. Nanowire photonic crystal waveguides for single-atom trapping and strong light–matter interactions. Appl. Phys. Lett. 104, 111103 (2014).

    ADS  Article  Google Scholar 

  20. 20

    Tiecke, T. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).

    ADS  Article  Google Scholar 

  21. 21

    Chang, D. E., Cirac, J. I. & Kimble, H. J. Self-organization of atoms along a nanophotonic waveguide. Phys. Rev. Lett. 110, 113606 (2013).

    ADS  Article  Google Scholar 

  22. 22

    Douglas, J. S. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nature Photon. http://dx.doi.org/10.1038/nphoton.2015.57 (2015).

  23. 23

    Cho, J., Angelakis, D. G. & Bose, S. Fractional quantum Hall state in coupled cavities. Phys. Rev. Lett. 101, 246809 (2008).

    ADS  Article  Google Scholar 

  24. 24

    Diehl, S., Rico, E., Baranov, M. A. & Zoller, P. Topology by dissipation in atomic quantum wires. Nature Phys. 7, 971–977 (2011).

    ADS  Article  Google Scholar 

  25. 25

    Bardyn, C. et al. Topology by dissipation. New J. Phys. 15, 085001 (2013).

    ADS  Article  Google Scholar 

  26. 26

    Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    ADS  Article  Google Scholar 

  27. 27

    Yannopapas, V. Optical forces near a plasmonic nanostructure. Phys. Rev. B 78, 045412 (2008).

    ADS  Article  Google Scholar 

  28. 28

    Contreras-Reyes, A. M. et al. Casimir–Polder interaction between an atom and a dielectric grating. Phys. Rev. A 82, 052517 (2010).

    ADS  Article  Google Scholar 

  29. 29

    Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).

    ADS  Article  Google Scholar 

  30. 30

    Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007).

    ADS  Article  Google Scholar 

  31. 31

    Hauke, P. et al. Complete devil's staircase and crystal–superfluid transitions in a dipolar XXZ spin chain: a trapped ion quantum simulation. New J. Phys. 12, 113037 (2010).

    ADS  Article  Google Scholar 

  32. 32

    Maik, M., Hauke, P., Dutta, O., Zakrzewski, J. & Lewenstein, M. Quantum spin models with long-range interactions and tunnelings: a quantum Monte Carlo study. New J. Phys. 14, 113006 (2012).

    ADS  Article  Google Scholar 

  33. 33

    Trefzger, C., Menotti, C. & Lewenstein, M. Ultracold dipolar gas in an optical lattice: the fate of metastable states. Phys. Rev. A 78, 043604 (2008).

    ADS  Article  Google Scholar 

  34. 34

    Hauke, P. & Tagliacozzo, L. Spread of correlations in long-range interacting quantum systems. Phys. Rev. Lett. 111, 207202 (2013).

    ADS  Article  Google Scholar 

  35. 35

    Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nature Phys. 5, 633–636 (2009).

    ADS  Article  Google Scholar 

  36. 36

    González-Tudela, A. & Porras, D. Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics. Phys. Rev. Lett. 110, 080502 (2013).

    ADS  Article  Google Scholar 

  37. 37

    Rodriguez, A. W., McCauley, A. P., Joannopoulos, J. D. & Johnson, S. G. Casimir forces in the time domain: theory. Phys. Rev. A 80, 012115 (2009).

    ADS  Article  Google Scholar 

  38. 38

    Hung, C.-L., Meenehan, S. M., Chang, D. E., Painter, O. & Kimble, H. J. Trapped atoms in one-dimensional photonic crystals. New J. Phys. 15, 083026 (2013).

    ADS  Article  Google Scholar 

  39. 39

    Greiner, M. Ultracold Quantum Gases in Three-Dimensional Optical Lattice Potentials PhD thesis, Ludwig-Maximilians-Universität München (2003).

  40. 40

    Shen, J.-T. & Fan, S. Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95, 213001 (2005).

    ADS  Article  Google Scholar 

  41. 41

    Johnson, S. G. & Joannopoulos, J. D. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Opt. Express 8, 173–190 (2001).

    ADS  Article  Google Scholar 

  42. 42

    Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

    MATH  Google Scholar 

  43. 43

    Srinivasan, K. & Painter, O. Momentum space design of high-Q photonic crystal optical cavities. Opt. Express 10, 670–684 (2002).

    ADS  Article  Google Scholar 

  44. 44

    Taguchi, Y., Takahashi, Y., Sato, Y., Asano, T. & Noda, S. Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million. Opt. Express 19, 11916–11921 (2011).

    ADS  Article  Google Scholar 

  45. 45

    Sekoguchi, H., Takahashi, Y., Asano, T. & Noda, S. Photonic crystal nanocavity with a Q-factor of˜ 9 million. Opt. Express 22, 916–924 (2014).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank O. Painter, J. Muñiz and S. Meenehan for discussions. The work of A.G.-T. and J.I.C. was funded by European Union integrated project ‘Simulators and Interfaces with Quantum Systems’ (SIQS). A.G.-T. also acknowledges support from the Alexander Von Humboldt Foundation and Intra-European Fellowship NanoQuIS (625955). J.I.C. acknowledges support as a Moore Distinguished Scholar. D.E.C. acknowledges support from Fundacio Privada Cellex Barcelona. H.J.K. and C.-L.H. acknowledge funding by the Institute for Quantum Information and Matter, a National Science Foundation (NSF) Physics Frontier Center, with support of the Moore Foundation, by the Air Force Office of Scientific Research, Quantum Memories in Photon-Atomic-Solid State Systems (QuMPASS) Multidisciplinary University Research Initiatives (MURI), by the Department of Defense National Security Science and Engineering Faculty Fellows (DoD NSSEFF) programme, and by NSF PHY1205729. H.J.K. acknowledges support as a Max Planck Institute for Quantum Optics Distinguished Scholar.

Author information

Affiliations

Authors

Contributions

A.G.-T. and C.-L.H. carried out analytical and numerical calculations. A.G.-T., C.-L.H., D.C., J.I.C. and H.J.K. contributed materials and analysis tools. A.G-T. and H.J.K. wrote the manuscript.

Corresponding author

Correspondence to H. J. Kimble.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5291 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Tudela, A., Hung, CL., Chang, D. et al. Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals. Nature Photon 9, 320–325 (2015). https://doi.org/10.1038/nphoton.2015.54

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing