Abstract

In megabar shock waves, materials compress and undergo a phase transition to a dense charged-particle system that is dominated by strong correlations and quantum effects. This complex state, known as warm dense matter, exists in planetary interiors and many laboratory experiments (for example, during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions). Here, we apply record peak brightness X-rays at the Linac Coherent Light Source to resolve ionic interactions at atomic (ångström) scale lengths and to determine their physical properties. Our in situ measurements characterize the compressed lattice and resolve the transition to warm dense matter, demonstrating that short-range repulsion between ions must be accounted for to obtain accurate structure factor and equation of state data. In addition, the unique properties of the X-ray laser provide plasmon spectra that yield the temperature and density with unprecedented precision at micrometre-scale resolution in dynamic compression experiments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    The ice layer in Uranus and Neptune—diamonds in the sky? Nature 292, 435–436 (1981).

  2. 2.

    et al. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science 286, 100–102 (1999).

  3. 3.

    et al. Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nature Geosci. 6, 926–929 (2013).

  4. 4.

    et al. The formation of warm dense matter: experimental evidence for electronic bond hardening in gold. Science 323, 1033–1037 (2009).

  5. 5.

    et al. Symmetric inertial confinement fusion implosions at ultra-high laser energies. Science 327, 1228–1231 (2010).

  6. 6.

    , , & Theory of the aluminum shock equation of state to 104 Mbar. Phys. Lett. 108, 157–160 (1985).

  7. 7.

    et al. X-ray scattering measurements of strong ion–ion correlations in shock-compressed aluminum. Phys. Rev. Lett. 110, 065001 (2013).

  8. 8.

    et al. Direct observation of strong ion coupling in laser-driven shock-compressed targets. Phys. Rev. Lett. 99, 135006 (2007).

  9. 9.

    et al. Direct measurements of the ionization potential depression in a dense plasma. Phys. Rev. Lett. 109, 065002 (2012).

  10. 10.

    et al. Turning solid aluminium transparent by intense soft X-ray photoionization. Nature Phys. 5, 693–696 (2009).

  11. 11.

    , , , & Structural phase transformations via first-principles simulation. Europhys. Lett. 26, 345–351 (1994).

  12. 12.

    & All-electron path integral Monte Carlo simulations of warm dense matter: application to water and carbon plasmas. Phys. Rev. Lett. 108, 115502 (2012).

  13. 13.

    et al. Probing warm dense lithium by inelastic X-ray scattering. Nature Phys. 4, 940–944 (2008).

  14. 14.

    & Extending linear response: inferences from electron–ion structure factors. Phys. Rev. Lett. 81, 4456–4459 (1998).

  15. 15.

    et al. Electronic structure investigation of highly compressed aluminum with K edge absorption spectroscopy. Phys. Rev. Lett. 107, 165006 (2011).

  16. 16.

    et al. X-ray diagnosis of the pressure induced Mott nonmetal–metal transition. Phys. Rev. Lett. 108, 055002 (2012).

  17. 17.

    et al. First lasing and operation of an ångström-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

  18. 18.

    et al. Femtosecond visualization of lattice dynamics in shock-compressed matter. Science 342, 220–223 (2013).

  19. 19.

    et al. Demonstration of self-seeding in a hard-X-ray free-electron laser. Nature Photon. 6, 693–698 (2012).

  20. 20.

    Temperatures in the Earth's core from melting-point measurements of iron at high static pressures. Nature 363, 534–536 (1993).

  21. 21.

    et al. Relativistic plasma nanophotonics for ultrahigh energy density physics. Nature Photon. 7, 796–800 (2013).

  22. 22.

    et al. Ultrafast X-ray Thomson scattering of shock-compressed matter. Science 322, 69–71 (2008).

  23. 23.

    , , , & Predictions of X-ray scattering spectra for warm dense matter. Phys. Rev. E 89, 023108 (2014).

  24. 24.

    & Ab initio simulations for the ion–ion structure factor of warm dense aluminum. Phys. Rev. Lett. 112, 145007 (2014).

  25. 25.

    , , , & Kinoform phase plates for focal plane irradiance profile control. Opt. Lett. 19, 417–419 (1994).

  26. 26.

    , & HELIOS-CR A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling. J. Quant. Spectrosc. Radiat. Transfer 99, 381–397 (2006).

  27. 27.

    et al. Plasmon measurements with a seeded X-ray laser. J. Instrum. 8, C11014 (2013).

  28. 28.

    , & Generalized X-ray scattering cross section from non-equilibrium solids and plasmas. Phys. Rev. E 74, 026402 (2006).

  29. 29.

    , , & Screening of ionic cores in partially ionized plasmas within linear response. Phys. Rev. E 81, 065401(R) (2010).

  30. 30.

    , & Ion structure in warm dense matter: benchmarking hypernetted-chain equations by first-principle simulations. Phys. Rev. E 79, 010201(R) (2009).

  31. 31.

    Difference in X-ray scattering between metallic and non-metallic liquids due to conduction electrons. J. Phys. F 17, 295–304 (1987).

  32. 32.

    , , , & Theoretical model of X-ray scattering as a dense matter probe. Phys. Rev. E. 67, 026412 (2003).

  33. 33.

    Energy and pressure of a zero-temperature plasma. Astrophys. J. 134, 669–682 (1961).

  34. 34.

    & Ab initio simulations of the K-edge shift along the aluminum hugoniot. Phys. Rev. Lett. 101, 155001 (2008).

  35. 35.

    , , & Dynamic ion structure factor of warm dense matter. Phys. Rev. Lett. 109, 065002 (2012).

  36. 36.

    , & Melting of aluminum, molybdenum, and the light actinides. Phys. Rev. B 70, 184112 (2004).

  37. 37.

    Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa. J. Appl. Phys. 99, 103512 (2006).

  38. 38.

    & Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–581 (1993).

  39. 39.

    & Ab initio molecular-dynamics simulation of the liquid–metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

  40. 40.

    & Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

  41. 41.

    & Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

  42. 42.

    , & Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  43. 43.

    , & Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).

  44. 44.

    Projector augmented-wave method. Phys. Rev. B 50, 17953–17978 (1994).

  45. 45.

    & From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

  46. 46.

    A unified formulation of the constant temperature molecular-dynamics methods. Chem. Phys. 81, 511–519 (1984).

  47. 47.

    Constant temperature molecular dynamics methods. Prog. Theor. Phys. 103(suppl.), 1–46 (1991).

  48. 48.

    & On special points for Brillouin zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

Download references

Acknowledgements

This work was performed at the Matter at Extreme Conditions (MEC) instrument of the LCLS, supported by the DOE Office of Science, Fusion Energy Science (contract no. SF00515). This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182) and partially supported by the DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division (contract no. DE-AC02-76SF00515). Part of this work was performed with the assistance of the US Department of Energy by Lawrence Livermore National Laboratory (contract no. DE-AC52-07NA27344). This work was also supported by a Laboratory Directed Research and Development grant (11-ERD-050) and the Peter–Paul–Ewald Fellowship of the VolkswagenStiftung.

Author information

Affiliations

  1. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 19, Menlo Park, California 94025, USA

    • L. B. Fletcher
    • , H. J. Lee
    • , E. Galtier
    • , B. Nagler
    • , P. Heimann
    • , C.-C. Kao
    • , H. Nuhn
    • , J. Welch
    • , U. Zastrau
    • , J. B. Hastings
    •  & S. H. Glenzer
  2. Physics Department, University of California Berkeley, Berkeley, California 94709, USA

    • L. B. Fletcher
    • , M. Millot
    • , B. Barbrel
    •  & R. W. Falcone
  3. Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94551, USA

    • T. Döppner
    • , S. LePape
    • , T. Ma
    • , M. Millot
    • , A. Pak
    •  & D. Turnbull
  4. Plasma Physics Group, QuantumWise A/S, Lersoe Parkalle 107, Koebenhavn 2100, Denmark

    • C. Fortmann
  5. AWE plc, Aldermaston, Reading RG7 4PR, UK

    • D. A. Chapman
  6. Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, UK

    • D. A. Chapman
    •  & D. O. Gericke
  7. Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, Dresden 01187, Germany

    • J. Vorberger
  8. University of Oxford, Parks Road, Oxford OX1 3PU, UK

    • T. White
    •  & G. Gregori
  9. General Atomics, 3550 General Atomics Ct, San Diego, California 92121, USA

    • M. Wei
  10. Institute for Optics and Quantum Electronics, Friedrich-Schiller-University, Jena 07743, Germany

    • U. Zastrau
  11. GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, Darmstadt 64291, Germany

    • P. Neumayer

Authors

  1. Search for L. B. Fletcher in:

  2. Search for H. J. Lee in:

  3. Search for T. Döppner in:

  4. Search for E. Galtier in:

  5. Search for B. Nagler in:

  6. Search for P. Heimann in:

  7. Search for C. Fortmann in:

  8. Search for S. LePape in:

  9. Search for T. Ma in:

  10. Search for M. Millot in:

  11. Search for A. Pak in:

  12. Search for D. Turnbull in:

  13. Search for D. A. Chapman in:

  14. Search for D. O. Gericke in:

  15. Search for J. Vorberger in:

  16. Search for T. White in:

  17. Search for G. Gregori in:

  18. Search for M. Wei in:

  19. Search for B. Barbrel in:

  20. Search for R. W. Falcone in:

  21. Search for C.-C. Kao in:

  22. Search for H. Nuhn in:

  23. Search for J. Welch in:

  24. Search for U. Zastrau in:

  25. Search for P. Neumayer in:

  26. Search for J. B. Hastings in:

  27. Search for S. H. Glenzer in:

Contributions

L.B.F. and S.H.G. co-wrote the manuscript. L.B.F., H.J.L., T.D., E.G., B.N., P.H., S.L.P., T.M., A.P., D.T., T.W., M.W., B.B., U.Z., J.B.H. and S.H.G. performed the experiment. U.Z., T.D. and H.J.L. developed and commissioned the spectrometer. L.B.F. and A.P. analysed the spectra. C.F., M.M., D.A.C., D.O.G., J.V. and G.G. performed calculations and simulations. L.B.F., T.D., M.M., D.A.C., D.O.G., J.V., G.G., R.W.F., C.-C.K., H.N., J.W., P.N., J.B.H. and S.H.G. conceived the experiment and interpreted the results.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to L. B. Fletcher or S. H. Glenzer.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2015.41

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing