Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell

Subjects

Abstract

The emergence of wearable electronics and optoelectronics requires the development of devices that are not only highly flexible but can also be woven into textiles to offer a truly integrated solution. Here, we report a colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell (PLEC). The fibre-shaped PLEC is fabricated using all-solution-based processes that can be scaled up for practical applications. The design has a coaxial structure comprising a modified metal wire cathode and a conducting aligned carbon nanotube sheet anode, with an electroluminescent polymer layer sandwiched between them. The fibre shape offers unique and promising advantages. For example, the luminance is independent of viewing angle, the fibre-shaped PLEC can provide a variety of different and tunable colours, it is lightweight, flexible and wearable, and it can potentially be woven into light-emitting clothes for the creation of smart fabrics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic illustration of the preparation and structural characterization of the PLEC.
Figure 2: Characterization of a fibre-shaped PLEC.
Figure 3: Integrated PLEC fibres and textiles.

References

  1. Meier, S. B. et al. Light-emitting electrochemical cells: recent progress and future prospects. Mater. Today 17, 217–223 (2014).

    Article  Google Scholar 

  2. Tordera, D. et al. Simple, fast, bright, and stable light sources. Adv. Mater. 24, 897–900 (2012).

    Article  Google Scholar 

  3. Moran-Mirabal, J. M. et al. Electrospun light-emitting nanofibres. Nano Lett. 7, 458–463 (2007).

    Article  ADS  Google Scholar 

  4. Shao, Y., Bazan, G. C. & Heeger, A. J. Long-lifetime polymer light-emitting electrochemical cells. Adv. Mater. 19, 365–370 (2007).

    Article  Google Scholar 

  5. Pei, Q., Yu, G., Zhang, C., Yang, Y. & Heeger, A. J. Polymer light-emitting electrochemical cells. Science 269, 1086–1088 (1995).

    Article  ADS  Google Scholar 

  6. Liang, J., Li, L., Niu, X., Yu, Z. & Pei, Q. Elastomeric polymer light-emitting devices and displays. Nature Photon. 7, 817–824 (2013).

    Article  ADS  Google Scholar 

  7. Gustafsson, G. et al. Flexible light-emitting diodes made from soluble conducting polymers. Nature 357, 477–479 (1992).

    Article  ADS  Google Scholar 

  8. Li, L. et al. Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire–polymer composite electrode. Adv. Mater. 23, 5563–5567 (2011).

    Article  Google Scholar 

  9. Jiang, J. X. et al. High-efficiency white-light-emitting devices from a single polymer by mixing singlet and triplet emission. Adv. Mater. 18, 1769–1773 (2006).

    Article  Google Scholar 

  10. Höfle, S., Schienle, A., Bruns, M., Lemmer, U. & Colsmann, A. Enhanced electron injection into inverted polymer light-emitting diodes by combined solution-processed zinc oxide/polyethylenimine interlayers. Adv. Mater. 26, 2750–2754 (2014).

    Article  Google Scholar 

  11. Ying, L., Ho, C.-L., Wu, H., Cao, Y. & Wong, W.-Y. White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress. Adv. Mater. 26, 2459–2473 (2014).

    Article  Google Scholar 

  12. Wong, W. Y., Zhou, G. J., Yu, X. M., Kwok, H. S. & Tang, B. Z. Amorphous diphenylaminofluorene-functionalized iridium complexes for high-efficiency electrophosphorescent light-emitting diodes. Adv. Funct. Mater. 16, 838–846 (2006).

    Article  Google Scholar 

  13. Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009).

    Article  ADS  Google Scholar 

  14. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  ADS  Google Scholar 

  15. Groves, C. Organic light-emitting diodes: bright design. Nature Mater. 12, 597–598 (2013).

    Article  ADS  Google Scholar 

  16. Sun, Y. & Forrest, S. R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nature Photon. 2, 483–487 (2008).

    Article  Google Scholar 

  17. Han, T.-H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photon. 6, 105–110 (2012).

    Article  ADS  Google Scholar 

  18. White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nature Photon. 7, 811–816 (2013).

    Article  ADS  Google Scholar 

  19. Wu, H. B. et al. Efficient single active layer electrophosphorescent white polymer light-emitting diodes. Adv. Mater. 20, 696–702 (2008).

    Article  Google Scholar 

  20. Kabra, D., Lu, L. P., Song, M. H., Snaith, H. J. & Friend, R. H. Efficient single-layer polymer light-emitting diodes. Adv. Mater. 22, 3194–3198 (2010).

    Article  Google Scholar 

  21. Yook, K. S. & Lee, J. Y. Small molecule host materials for solution processed phosphorescent organic light-emitting diodes. Adv. Mater. 26, 4218–4233 (2014).

    Article  Google Scholar 

  22. Pei, Q., Yang, Y., Yu, G., Zhang, C. & Heeger, A. J. Polymer light-emitting electrochemical cells: in situ formation of a light-emitting p–n junction. J. Am. Chem. Soc. 118, 3922–3929 (1996).

    Article  Google Scholar 

  23. Yu, Z., Niu, X., Liu, Z. & Pei, Q. Intrinsically stretchable polymer light-emitting devices using carbon nanotube–polymer composite electrodes. Adv. Mater. 23, 3989–3994 (2011).

    Article  Google Scholar 

  24. Gao, J. & Dane, J. Planar polymer light-emitting electrochemical cells with extremely large interelectrode spacing. Appl. Phys. Lett. 83, 3027–3029 (2003).

    Article  ADS  Google Scholar 

  25. Sandström, A., Asadpoordarvish, A., Enevold, J. & Edman, L. Spraying light: ambient-air fabrication of large-area emissive devices on complex-shaped surfaces. Adv. Mater. 26, 4975–4980 (2014).

    Article  Google Scholar 

  26. Yang, Z., Deng, J., Sun, X., Li, H. & Peng, H. Stretchable, wearable dye-sensitized solar cells. Adv. Mater. 26, 2643–2647 (2014).

    Article  Google Scholar 

  27. Yu, D. et al. Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nature Nanotech. 9, 555–562 (2014).

    Article  ADS  Google Scholar 

  28. Lee, M. R. et al. Solar power wires based on organic photovoltaic materials. Science 324, 232–235 (2009).

    Article  ADS  Google Scholar 

  29. Kou, L. et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nature Commun. 5, 3754 (2014).

    Article  ADS  Google Scholar 

  30. Abouraddy, A. F. et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nature Mater. 6, 336–347 (2007).

    Article  ADS  Google Scholar 

  31. Yamada, T. et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotech. 6, 296–301 (2011).

    Article  ADS  Google Scholar 

  32. Gao, W. et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotech. 6, 496–500 (2011).

    Article  ADS  Google Scholar 

  33. Sekitani, T. & Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 22, 2228–2246 (2010).

    Article  Google Scholar 

  34. Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Mater. 8, 494–499 (2009).

    Article  ADS  Google Scholar 

  35. Zhang, Z. et al. A lightweight polymer solar cell textile that functions when illuminated from either side. Angew. Chem. Int. Ed. 53, 11571–11574 (2014).

    Article  Google Scholar 

  36. Granström, M. & Inganäs, O. White light emission from a polymer blend light emitting diode. Appl. Phys. Lett. 68, 147–149 (1996).

    Article  ADS  Google Scholar 

  37. Shen, Z., Burrows, P. E., Bulović, V., Forrest, S. R. & Thompson, M. E. Three-colour, tunable, organic light-emitting devices. Science 276, 2009–2011 (1997).

    Article  Google Scholar 

  38. Parthasarathy, G., Gu, G. & Forrest, S. R. A full-colour transparent metal-free stacked organic light emitting device with simplified pixel biasing. Adv. Mater. 11, 907–910 (1999).

    Article  Google Scholar 

  39. Sandström, A., Dam, H. F., Krebs, F. C. & Edman, L. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nature Commun. 3, 1002 (2012).

    Article  ADS  Google Scholar 

  40. Zhang, Z. et al. Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fibre format. Adv. Mater. 26, 466–470 (2014).

    Article  Google Scholar 

  41. Zhang, M. et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215–1219 (2005).

    Article  ADS  Google Scholar 

  42. O'Connor, B., An, K. H., Zhao, Y., Pipe, K. P. & Shtein, M. Fibre shaped light emitting device. Adv. Mater. 19, 3897–3900 (2007).

    Article  Google Scholar 

  43. Sandström, A., Matyba, P. & Edman, L. Yellow-green light-emitting electrochemical cells with long lifetime and high efficiency. Appl. Phys. Lett. 96, 053303 (2010).

    Article  ADS  Google Scholar 

  44. Edman, L. et al. Single-component light-emitting electrochemical cell with improved stability. Appl. Phys. Lett. 82, 3961–3963 (2003).

    Article  ADS  Google Scholar 

  45. Dane, J. & Gao, J. Imaging the degradation of polymer light-emitting devices. Appl. Phys. Lett. 85, 3905–3907 (2004).

    Article  ADS  Google Scholar 

  46. Zhang, Y. & Gao, J. Lifetime study of polymer light-emitting electrochemical cells. J. Appl. Phys. 100, 084501 (2006).

    Article  ADS  Google Scholar 

  47. Liu, D. et al. Solid-state, polymer-based fibre solar cells with carbon nanotube electrodes. ACS Nano 6, 11027–11034 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2011CB932503), the National Natural Science Foundation of China (21225417, 61136003), the Science and Technology Commission of Shanghai Municipality (12nm0503200), the Fok Ying Tong Education Foundation, the Program for Special Appointments of Professors at Shanghai Institutions of Higher Learning and the Program for Outstanding Young Scholars from the Organization Department of the CPC Central Committee.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z., Q.P. and H.P. discussed and designed the experiment. K.G. carried out the performance tests. Y.L., X.L., G.G., H.L., Y.L., F.Z., Q.Z., B.W. and H.P. participated in materials synthesis, device fabrication and data processing. Z.Z. and H.P. wrote the paper. H.P. supervised the project.

Corresponding author

Correspondence to Huisheng Peng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3609 kb)

Supplementary Movie 1

Supplementary information (MOV 352 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Guo, K., Li, Y. et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nature Photon 9, 233–238 (2015). https://doi.org/10.1038/nphoton.2015.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing