Advances in real-time multispectral optoacoustic imaging and its applications


Optoacoustic imaging, or photoacoustic imaging, is insensitive to photon scattering within biological tissue and, unlike conventional optical imaging methods, makes high-resolution optical visualization deep within tissue possible. Recent advances in laser technology, detection strategies and inversion techniques have led to significant improvements in the capabilities of optoacoustic systems. A key empowering feature is the development of video-rate multispectral imaging in two and three dimensions, which offers fast, spectral differentiation of distinct photoabsorbing moieties. We review recent advances and capabilities in the technology and its corresponding emerging biological and clinical applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Optoacoustic imaging of the local absorption of light by tissue chromophores or photoabsorbing agents and labelled cells gives rise to ultrasound waves.
Figure 2: Noninvasive optoacoustic imaging on humans.
Figure 3: Optoacoustic views at the mesoscopic scale.


  1. 1

    Busse, G. & Rosencwaig, A. Subsurface imaging with photoacoustics. Appl. Phys. Lett. 36, 815 (1980).

    ADS  Article  Google Scholar 

  2. 2

    Rosencwaig, A. Photoacoustic spectroscopy of biological materials. Science 181, 657–658 (1973).

    ADS  Article  Google Scholar 

  3. 3

    Diebold, G. J., Khan, M. I. & Park, S. M. Photoacoustic 'signatures' of particulate matter: optical production of acoustic monopole radiation. Science 250, 101–104 (1990).

    ADS  Article  Google Scholar 

  4. 4

    Kruger, R. A. Photoacoustic ultrasound. Med. Phys. 21, 127–131 (1994).

    Article  Google Scholar 

  5. 5

    Oraevsky, A. A., Jacques, S. L., Esenaliev, R. O. & Tittel, F. K. Laser-based optoacoustic imaging in biological tissues. Proc. SPIE (1994).

  6. 6

    Wang, X. et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nature Biotechnol. 21, 803–806 (2003).

    Article  Google Scholar 

  7. 7

    Ntziachristos, V., Ripoll, J., Wang, L. V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotechnol. 23, 313–320 (2005).

    Article  Google Scholar 

  8. 8

    Razansky, D., Vinegoni, C. & Ntziachristos, V. Multispectral photoacoustic imaging of fluorochromes in small animals. Opt. Lett. 32, 891–2893 (2007).

    Article  Google Scholar 

  9. 9

    Zhang, H. F., Maslov, K., Stoica, G. & Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006).

    Article  Google Scholar 

  10. 10

    Razansky, D. et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nature Photon. 3, 412–417 (2009).

    ADS  Article  Google Scholar 

  11. 11

    Li, M-L. et al. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc. IEEE 96, 481–489 (2008).

    Article  Google Scholar 

  12. 12

    Burton, N. C. et al. Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization. NeuroImage 65, 522–528 (2013).

    Article  Google Scholar 

  13. 13

    Xiang, L. et al. Noninvasive real time tomographic imaging of epileptic foci and networks. NeuroImage 66, 240–248 (2013).

    Article  Google Scholar 

  14. 14

    Yao, J. et al. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. NeuroImage 64, 257–266 (2013).

    Article  Google Scholar 

  15. 15

    Herzog, E. et al. Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography. Radiology 263, 461–468 (2012).

    Article  Google Scholar 

  16. 16

    Laufer, J. et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt. 17, 056016 (2012).

    ADS  Article  Google Scholar 

  17. 17

    Ruan, Q. et al. Development of an anti-angiogenic therapeutic model combining scAAV2-delivered siRNAs and noninvasive photoacoustic imaging of tumor vasculature development. Cancer Lett. 332, 120–129 (2013).

    Article  Google Scholar 

  18. 18

    Wang, B. et al. Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett. 9, 2212–2217 (2009).

    ADS  Article  Google Scholar 

  19. 19

    Taruttis, A. et al. Multispectral optoacoustic tomography of myocardial infarction. Photoacoustics 1, 3–8 (2013).

    Article  Google Scholar 

  20. 20

    Fronheiser, M. P. et al. Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature. J. Biomed. Opt. 15, 021305 (2010).

    ADS  Article  Google Scholar 

  21. 21

    Niederhauser, J. J., Jaeger, M., Lemor, R., Weber, P. & Frenz, M. Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans. Med. Imag. 24, 436–440 (2005).

    Article  Google Scholar 

  22. 22

    Kim, C., Erpelding, T. N., Jankovic, L. & Wang, L. V. Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging. Phil. Trans. A Math. Phys. Eng. Sci. 369, 4644–4650 (2011).

    Article  Google Scholar 

  23. 23

    Zackrisson, S., van de Ven, S. M. W. Y. & Gambhir, S. S. Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res. 74, 979–1004 (2014).

    Article  Google Scholar 

  24. 24

    Wilson, K. E., Wang, T. Y. & Willmann, J. K. Acoustic and photoacoustic molecular imaging of cancer. J. Nucl. Med. 54, 1851–1854 (2013).

    Article  Google Scholar 

  25. 25

    Cox, B., Laufer, J. G., Arridge, S. R. & Beard, P. C. Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt. 17, 061202 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Luke, G. P., Yeager, D. & Emelianov, S. Y. Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann. Biomed. Eng. 40, 422–437 (2012).

    Article  Google Scholar 

  28. 28

    Gateau, J., Chekkoury, A. & Ntziachristos, V. Ultra-wideband three-dimensional optoacoustic tomography. Opt. Lett. 38, 4671–4674 (2013).

    ADS  Article  Google Scholar 

  29. 29

    Taruttis, A., Rosenthal, A., Kacprowicz, M., Burton, N. C. & Ntziachristos, V. Multiscale multispectral optoacoustic tomography by a stationary wavelet transform prior to unmixing. IEEE Trans. Med. Imag. 33, 1194–1202 (2014).

    Article  Google Scholar 

  30. 30

    Dima, A., Burton, N. C. & Ntziachristos, V. Multispectral optoacoustic tomography at 64, 128, and 256 channels. J. Biomed. Opt. 19, 36021 (2014).

    Article  Google Scholar 

  31. 31

    Xia, J. et al. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J. Biomed. Opt. 17, 050506 (2012).

    ADS  Article  Google Scholar 

  32. 32

    Diebold, G. J., Sun, T. & Khan, M. I. Photoacoustic monopole radiation in one, two, and three dimensions. Phys. Rev. Lett. 67, 3384–3387 (1991).

    ADS  Article  Google Scholar 

  33. 33

    Buehler, A., Kacprowicz, M., Taruttis, A. & Ntziachristos, V. Real-time handheld multispectral optoacoustic imaging. Opt. Lett. 38, 1404–1406 (2013).

    ADS  Article  Google Scholar 

  34. 34

    Bézière, N. & Ntziachristos, V. Optoacoustic imaging: an emerging modality for the gastrointestinal tract. Gastroenterology 141, 1979–1985 (2011).

    Article  Google Scholar 

  35. 35

    Wang, B. et al. In vivo intravascular ultrasound-guided photoacoustic imaging of lipid in plaques using an animal model of atherosclerosis. Ultrasound Med. Biol. 38, 2098–2103 (2012).

    ADS  Article  Google Scholar 

  36. 36

    Yang, J-M. et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nature Med. 18, 1297–1302 (2012).

    Article  Google Scholar 

  37. 37

    Heijblom, M. et al. Visualizing breast cancer using the Twente photoacoustic mammoscope: what do we learn from twelve new patient measurements? Opt. Express 20, 11582–11597 (2012).

    ADS  Article  Google Scholar 

  38. 38

    Su, R., Ermilov, S. A., Liopo, A. V. & Oraevsky, A. A. Three-dimensional optoacoustic imaging as a new noninvasive technique to study long-term biodistribution of optical contrast agents in small animal models. J. Biomed. Opt. 17, 101506 (2012).

    ADS  Article  Google Scholar 

  39. 39

    Buehler, A., Deán-Ben, X. L., Claussen, J., Ntziachristos, V. & Razansky, D. Three-dimensional optoacoustic tomography at video rate. Opt. Express 20, 22712–22719 (2012).

    ADS  Article  Google Scholar 

  40. 40

    Dean-Ben, X. L., Ozbek, A. & Razansky, D. Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography. IEEE Trans. Med. Imag. 32, 2050–2055 (2013).

    Article  Google Scholar 

  41. 41

    Taruttis, A., Morscher, S., Burton, N. C., Razansky, D. & Ntziachristos, V. Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs. PloS ONE 7, e30491 (2012).

    ADS  Article  Google Scholar 

  42. 42

    Taruttis, A., Claussen, J., Razansky, D. & Ntziachristos, V. Motion clustering for deblurring multispectral optoacoustic tomography images of the mouse heart. J. Biomed. Opt. 17, 016009 (2012).

    ADS  Article  Google Scholar 

  43. 43

    Shi, W., Shao, P., Hajireza, P., Forbrich, A. & Zemp, R. J. In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy. J. Biomed. Opt. 18, 26001 (2013).

    Article  Google Scholar 

  44. 44

    Dima, A. & Ntziachristos, V. Non-invasive carotid imaging using optoacoustic tomography. Opt. Express 20, 25044–25057 (2012).

    ADS  Article  Google Scholar 

  45. 45

    Ntziachristos, V. & Razansky, D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev. 110, 2783–2794 (2010).

    Article  Google Scholar 

  46. 46

    Stritzker, J. et al. Vaccinia virus-mediated melanin production allows MR and optoacoustic deep tissue imaging and laser-induced thermotherapy of cancer. Proc. Natl Acad. Sci. USA 110, 3316–3320 (2013).

    ADS  Article  Google Scholar 

  47. 47

    Glatz, J., Deliolanis, N. C., Buehler, A., Razansky, D. & Ntziachristos, V. Blind source unmixing in multi-spectral optoacoustic tomography. Opt. Express 19, 3175–3184 (2011).

    ADS  Article  Google Scholar 

  48. 48

    Tzoumas, S., Deliolanis, N., Morscher, S. & Ntziachristos, V. Unmixing molecular agents from absorbing tissue in multispectral optoacoustic tomography. IEEE Trans. Med. Imag. 33, 48–60 (2013).

    Article  Google Scholar 

  49. 49

    Tzoumas, S., Nunes, A., Deliolanis, N. C. & Ntziachristos, V. Effects of multispectral excitation on the sensitivity of molecular optoacoustic imaging. J. Biophotonics (2014).

  50. 50

    Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nature Methods 7, 603–614 (2010).

    Article  Google Scholar 

  51. 51

    Zhang, C. et al. Reflection-mode submicron-resolution in vivo photoacoustic microscopy. J. Biomed. Opt. 17, 020501 (2012).

    ADS  Article  Google Scholar 

  52. 52

    Vakoc, B. J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nature Med. 15, 1219–1223 (2009).

    Article  Google Scholar 

  53. 53

    Yeh, C., Hu, S., Maslov, K. & Wang, L. V. Photoacoustic microscopy of blood pulse wave. J. Biomed. Opt. 17, 070504 (2012).

    ADS  Article  Google Scholar 

  54. 54

    Rosenthal, A., Razansky, D. & Ntziachristos, V. Quantitative optoacoustic signal extraction using sparse signal representation. IEEE Trans. Med. Imag. 28, 1997–2006 (2009).

    Article  Google Scholar 

  55. 55

    Rosenthal, A., Razansky, D. & Ntziachristos, V. Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography. IEEE Trans. Med. Imag. 29, 1275–1285 (2010).

    Article  Google Scholar 

  56. 56

    Rosenthal, A., Ntziachristos, V. & Razansky, D. Model-based optoacoustic inversion with arbitrary-shape detectors. Med. Phys. 38, 4285–4295 (2011).

    Article  Google Scholar 

  57. 57

    Kruger, R. A., Kiser, W. L., Reinecke, D. R., Kruger, G. A. & Miller, K. D. Thermoacoustic molecular imaging of small animals. Mol. Imaging 2, 113–123 (2003).

    Article  Google Scholar 

  58. 58

    Razansky, D., Baeten, J. & Ntziachristos, V. Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT). Med. Phys. 36, 939–945 (2009).

    Article  Google Scholar 

  59. 59

    Zhang, E., Laufer, J. & Beard, P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry–Pérot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt. 47, 561–577 (2008).

    ADS  Article  Google Scholar 

  60. 60

    Paltauf, G., Nuster, R., Haltmeier, M. & Burgholzer, P. Photoacoustic tomography using a Mach–Zehnder interferometer as an acoustic line detector. Appl. Opt. 46, 3352–3358 (2007).

    ADS  MATH  Article  Google Scholar 

  61. 61

    Grün, H., Berer, T., Burgholzer, P., Nuster, R. & Paltauf, G. Three-dimensional photoacoustic imaging using fiber-based line detectors. J. Biomed. Opt. 15, 021306 (2010).

    ADS  Article  Google Scholar 

  62. 62

    Morris, P., Hurrell, A., Shaw, A., Zhang, E. & Beard, P. A Fabry–Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. J. Acoust. Soc. Am. 125, 3611–3622 (2009).

    ADS  Article  Google Scholar 

  63. 63

    Zhang, E. Z. & Beard, P. C. A miniature all-optical photoacoustic imaging probe. Proc. SPIE (2011).

  64. 64

    Rosenthal, A., Razansky, D. & Ntziachristos, V. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Opt. Lett. 36, 1833–1835 (2011).

    ADS  Article  Google Scholar 

  65. 65

    Govindan, V. & Ashkenazi, S. Bragg waveguide ultrasound detectors. IEEE Trans. Ultrason. Ferroelect. Freq. Control 59, 2304–2311 (2012).

    Article  Google Scholar 

  66. 66

    Esenaliev, R. O. et al. Laser optoacoustic imaging for breast cancer diagnostics: limit of detection and comparison with X-ray and ultrasound imaging. Proc. SPIE (1997).

  67. 67

    Kruger, R. A., Lam, R. B., Reinecke, D. R., Del Rio, S. P. & Doyle, R. P. Photoacoustic angiography of the breast. Med. Phys. 37, 6096–6100 (2010).

    Article  Google Scholar 

  68. 68

    Ermilov, S. A. et al. Laser optoacoustic imaging system for detection of breast cancer. J. Biomed. Opt. 14, 024007 (2009).

    ADS  Article  Google Scholar 

  69. 69

    Manohar, S. et al. Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt. Express 15, 12277–12285 (2007).

    ADS  Article  Google Scholar 

  70. 70

    Siphanto, R. I. et al. Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis. Opt. Express 13, 89–95 (2005).

    ADS  Article  Google Scholar 

  71. 71

    Lao, Y., Xing, D., Yang, S. & Xiang, L. Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth. Phys. Med. Biol. 53, 4203–4212 (2008).

    Article  Google Scholar 

  72. 72

    Grootendorst, D. J. et al. First experiences of photoacoustic imaging for detection of melanoma metastases in resected human lymph nodes. Lasers Surg. Med. 44, 541–549 (2012).

    Article  Google Scholar 

  73. 73

    Zhang, E. Z. et al. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging. Biomed. Opt. Express 2, 2202–2215 (2011).

    Article  Google Scholar 

  74. 74

    Song, L., Maslov, K., Shung, K. K. & Wang, L. V. Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo. J. Biomed. Opt. 15, 021303 (2010).

    ADS  Article  Google Scholar 

  75. 75

    Chen, S-L. et al. Miniaturized all-optical photoacoustic microscopy based on microelectromechanical systems mirror scanning. Opt. Lett. 37, 4263–4265 (2012).

    ADS  Article  Google Scholar 

  76. 76

    Shao, P., Shi, W., Hajireza, P. & Zemp, R. J. Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging. J. Biomed. Opt. 17, 076024 (2012).

    ADS  Google Scholar 

  77. 77

    Sanz, J. & Fayad, Z. A. Imaging of atherosclerotic cardiovascular disease. Nature 451, 953–957 (2008).

    ADS  Article  Google Scholar 

  78. 78

    Jaffer, F. A. et al. Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury. J. Am. Coll. Cardiol. 57, 2516–2526 (2011).

    Article  Google Scholar 

  79. 79

    Wang, H-W. et al. Label-free bond-selective imaging by listening to vibrationally excited molecules. Phys. Rev. Lett. 106, 238106 (2011).

    ADS  Article  Google Scholar 

  80. 80

    Allen, T. J., Hall, A., Dhillon, A. P., Owen, J. S. & Beard, P. C. Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range. J. Biomed. Opt. 17, 061209 (2012).

    ADS  Article  Google Scholar 

  81. 81

    Sethuraman, S., Amirian, J. H., Litovsky, S. H., Smalling, R. W. & Emelianov, S. Y. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques. Opt. Express 16, 3362–3367 (2008).

    ADS  Article  Google Scholar 

  82. 82

    Jansen, K. et al. Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis. J. Biomed. Opt. 19, 026006 (2014).

    ADS  Article  Google Scholar 

  83. 83

    Rosenthal, A., Jaffer, F. A. & Ntziachristos, V. Intravascular multispectral optoacoustic tomography of atherosclerosis: prospects and challenges. Imaging Med. 4, 299–310 (2012).

    Article  Google Scholar 

  84. 84

    Dima, A., Gateau, J., Claussen, J., Wilhelm, D. & Ntziachristos, V. Optoacoustic imaging of blood perfusion: techniques for intraoperative tissue viability assessment. J. Biophoton. 6, 485–492 (2013).

    Article  Google Scholar 

  85. 85

    Karliczek, A. et al. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int. J. Colorectal Dis. 24, 569–576 (2009).

    Article  Google Scholar 

  86. 86

    Song, K. H., Kim, C., Cobley, C. M., Xia, Y. & Wang, L. V. Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett. 9, 183–188 (2009).

    ADS  Article  Google Scholar 

  87. 87

    Kim, C., Song, K. H., Gao, F. & Wang, L. V. Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats — volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging. Radiology 255, 442–450 (2010).

    Article  Google Scholar 

  88. 88

    Erpelding, T. N. et al. Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system. Radiology 256, 102–110 (2010).

    Article  Google Scholar 

  89. 89

    Grootendorst, D. J. et al. Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion. J. Biophoton. 6, 493–504 (2013).

    Article  Google Scholar 

  90. 90

    Galanzha, E. I. et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nature Nanotech. 4, 855–860 (2009).

    ADS  Article  Google Scholar 

  91. 91

    Galanzha, E. I., Shashkov, E. V., Spring, P. M., Suen, J. Y. & Zharov, V. P. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res. 69, 7926–7934 (2009).

    Article  Google Scholar 

  92. 92

    van Dam, G. M. et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nature Med. 17, 1315–1319 (2011).

    Article  Google Scholar 

  93. 93

    Sturm, M. B. et al. Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci. Transl. Med. 5, 184ra61 (2013).

    Article  Google Scholar 

  94. 94

    Xu, M. & Wang, L. V. Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. Phys. Rev. E 67, 056605 (2003).

    ADS  Article  Google Scholar 

  95. 95

    Jansen, K., van der Steen, A. F. W., van Beusekom, H. M. M., Oosterhuis, J. W. & van Soest, G. Intravascular photoacoustic imaging of human coronary atherosclerosis. Opt. Lett. 36, 597–599 (2011).

    ADS  Article  Google Scholar 

  96. 96

    Song, K. H., Stein, E. W., Margenthaler, J. A. & Wang, L. V. Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model. J. Biomed. Opt. 13, 054033 (2008).

    ADS  Article  Google Scholar 

  97. 97

    De la Zerda, A. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature Nanotech. 3, 557–562 (2008).

    ADS  Article  Google Scholar 

  98. 98

    Mallidi, S. et al. Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett. 9, 2825–2831 (2009).

    ADS  Article  Google Scholar 

  99. 99

    Lozano, N. et al. Liposome-gold nanorod hybrids for high-resolution visualization deep in tissues. J. Am. Chem. Soc. 134, 13256–13258 (2012).

    Article  Google Scholar 

Download references


We would like to thank Professor Simon Cherry (UC Davis), Mert Erkan and Stratis Tzoumas for useful discussions. A.T. acknowledges a Research Fellowship from the German Research Foundation (DFG). V.N. acknowledges funding from the DFG (SFB-824), the Gottfried Wilhelm Leibniz Prize of the DFG, and the European Commission project FAMOS (FP7 ICT).

Author information



Corresponding author

Correspondence to Vasilis Ntziachristos.

Ethics declarations

Competing interests

V.N. is a founder of iThera Medical GmbH, a company that commercializes optoacoustic technology.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taruttis, A., Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nature Photon 9, 219–227 (2015).

Download citation

Further reading