Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides

Abstract

Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic and optical properties of 2D TMDs.
Figure 2: Strong excitonic effects in 2D TMDs.
Figure 3: Structure, mechanism and performance of 2D TMD photodetectors.
Figure 4: Valley-dependent optoelectronic devices.
Figure 5: Coupled TMD–cavity photonic devices.
Figure 6: Quantum dot single-photon emitters in monolayer WSe2.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  2. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  ADS  Google Scholar 

  3. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  4. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  ADS  Google Scholar 

  5. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  6. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014).

    Article  ADS  Google Scholar 

  7. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  8. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  9. Mak, K. F., Ju, L., Wang, F. & Heinz, T. F. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012).

    ADS  Google Scholar 

  10. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    ADS  Google Scholar 

  11. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    Article  ADS  Google Scholar 

  12. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nature Photon. 8, 899–907 (2014).

    ADS  Google Scholar 

  13. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  14. Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    Google Scholar 

  15. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  16. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech. 9, 780–793 (2014).

    ADS  Google Scholar 

  17. Cudazzo, P., Tokatly, I. V. & Rubio, A. Dielectric screening in two-dimensional insulators: implications for excitonic and impurity states in graphane. Phys. Rev. B 84, 085406 (2011).

    ADS  Google Scholar 

  18. Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).

    ADS  Google Scholar 

  19. Komsa, H.-P. & Krasheninnikov, A. V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 86, 241201 (2012).

    ADS  Google Scholar 

  20. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318 (2013).

    ADS  Google Scholar 

  21. Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).

    ADS  Google Scholar 

  22. Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2013).

    ADS  Google Scholar 

  23. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014).

    ADS  Google Scholar 

  24. He, K. et al. Tightly bound excitons in monolayer WSe2 . Phys. Rev. Lett. 113, 026803 (2014).

    ADS  Google Scholar 

  25. Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

    ADS  Google Scholar 

  26. Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015).

    ADS  Google Scholar 

  27. Feldmann, J. et al. Linewidth dependence of radiative exciton lifetimes in quantum-wells. Phys. Rev. Lett. 59, 2337–2340 (1987).

    Article  ADS  Google Scholar 

  28. Haug, H. & Banyai, L. (eds) Optical Switching in Low-Dimensional Systems 206 (Plenum, 1989).

    Google Scholar 

  29. Schmittrink, S., Chemla, D. S. & Miller, D. A. B. Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys. 38, 89–188 (1989).

    ADS  Google Scholar 

  30. Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2004).

    MATH  Google Scholar 

  31. Mattheis, L. F. Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973).

    ADS  Google Scholar 

  32. Li, T. & Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007).

    Google Scholar 

  33. Lebegue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009).

    ADS  Google Scholar 

  34. Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85, 205302 (2012).

    ADS  Google Scholar 

  35. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    ADS  Google Scholar 

  36. Liu, G.-B., Shan, W.-Y., Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013).

    ADS  Google Scholar 

  37. Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2 . Nature Phys. 11, 141–147 (2015).

    ADS  Google Scholar 

  38. MacNeill, D. et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2 . Phys. Rev. Lett. 114, 037401 (2015).

    ADS  Google Scholar 

  39. Li, Y. et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2 . Phys. Rev. Lett. 113, 266804 (2014).

    ADS  Google Scholar 

  40. Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2 . Nature Phys. 11, 148–152 (2015).

    ADS  Google Scholar 

  41. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    ADS  Google Scholar 

  42. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    ADS  Google Scholar 

  43. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    ADS  Google Scholar 

  44. Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012).

    ADS  Google Scholar 

  45. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013).

    ADS  Google Scholar 

  46. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    ADS  Google Scholar 

  47. Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).

    ADS  Google Scholar 

  48. Lensky, Y. D., Song, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological valley currents in gapped Dirac materials. Phys. Rev. Lett. 114, 256601 (2015).

    ADS  Google Scholar 

  49. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nature Mater. 13, 1091–1095 (2014).

    ADS  Google Scholar 

  50. Zhang, C., Johnson, A., Hsu, C.-L., Li, L.-J. & Shih, C.-K. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 14, 2443–2447 (2014).

    ADS  Google Scholar 

  51. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1474 (2013).

    ADS  Google Scholar 

  52. Shang, J. et al. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 9, 647–655 (2015).

    Google Scholar 

  53. You, Y. et al. Observation of biexcitons in monolayer WSe2 . Nature Phys. 11, 477–481 (2015).

    ADS  Google Scholar 

  54. Sanvitto, D. et al. Observation of charge transport by negatively charged excitons. Science 294, 837–839 (2001).

    ADS  Google Scholar 

  55. Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nature Commun. 5, 4555 (2014).

    ADS  Google Scholar 

  56. Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nature Mater. 14, 301–306 (2015).

    ADS  Google Scholar 

  57. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotech. 9, 268–272 (2014).

    ADS  Google Scholar 

  58. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    ADS  Google Scholar 

  59. Lee, H. S. et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012).

    ADS  Google Scholar 

  60. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    ADS  Google Scholar 

  61. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nature Nanotech. 8, 497–501 (2013).

    ADS  Google Scholar 

  62. Tsai, D.-S. et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 7, 3905–3911 (2013).

    Google Scholar 

  63. Fontana, M. et al. Electron–hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci. Rep. 3, 1634 (2013).

    Google Scholar 

  64. Sundaram, R. S. et al. Electroluminescence in single layer MoS2 . Nano Lett. 13, 1416–1421 (2013).

    ADS  Google Scholar 

  65. Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014).

    ADS  Google Scholar 

  66. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotech. 9, 676–681 (2014).

    ADS  Google Scholar 

  67. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nature Nanotech. 9, 262–267 (2014).

    ADS  Google Scholar 

  68. Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nature Nanotech. 9, 1024–1030 (2014).

    ADS  Google Scholar 

  69. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature Nanotech. 9, 257–261 (2014).

    ADS  Google Scholar 

  70. Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nature Nanotech. 11, 42–46 (2016).

    ADS  Google Scholar 

  71. Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech. 8, 952–958 (2013).

    ADS  Google Scholar 

  72. Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

    ADS  Google Scholar 

  73. Xia, F., Mueller, T., Lin, Y.-m., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    ADS  Google Scholar 

  74. Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    ADS  Google Scholar 

  75. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    ADS  Google Scholar 

  76. Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech. 7, 472–478 (2012).

    ADS  Google Scholar 

  77. Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nature Photon. 7, 53–59 (2013).

    ADS  Google Scholar 

  78. Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photon. 7, 883–887 (2013).

    ADS  Google Scholar 

  79. Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photon. 7, 892–896 (2013).

    ADS  Google Scholar 

  80. Wang, X., Cheng, Z., Xu, K., Tsang, H. K. & Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photon. 7, 888–891 (2013).

    ADS  Google Scholar 

  81. Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011).

    ADS  Google Scholar 

  82. Wang, R. et al. Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide. Phys. Rev. B 86, 045406 (2012).

    ADS  Google Scholar 

  83. Sze, S. M. Semiconductor Devices: Physics and Technology (Wiley, 2002).

    Google Scholar 

  84. Katz, O., Garber, V., Meyler, B., Bahir, G. & Salzman, J. Gain mechanism in GaN Schottky ultraviolet detectors. Appl. Phys. Lett. 79, 1417–1419 (2001).

    ADS  Google Scholar 

  85. Furchi, M. M., Polyushkin, D. K., Pospischil, A. & Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2 . Nano Lett. 14, 6165–6170 (2014).

    ADS  Google Scholar 

  86. Kim, Y. D. et al. Bright visible light emission from graphene. Nature Nanotech. 10, 676–681 (2015).

    ADS  Google Scholar 

  87. Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

    ADS  Google Scholar 

  88. Yuan, H. et al. Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2 . Nature Nanotech. 9, 851–857 (2014).

    ADS  Google Scholar 

  89. Gan, X. et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 103, 181119 (2013).

    ADS  Google Scholar 

  90. Wu, S. et al. Control of two-dimensional excitonic light emission via photonic crystal. 2D Mater. 1, 011001 (2014).

    Google Scholar 

  91. Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    ADS  Google Scholar 

  92. Ye, Y. et al. Monolayer excitonic laser. Nature Photon. 9, 733–737 (2015).

    ADS  Google Scholar 

  93. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nature Photon. 9, 30–34 (2015).

    ADS  Google Scholar 

  94. Dufferwiel, S. et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nature Commun. 6, 8579 (2015).

    ADS  Google Scholar 

  95. Fujita, M., Takahashi, S., Tanaka, Y., Asano, T. & Noda, S. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 308, 1296–1298 (2005).

    ADS  Google Scholar 

  96. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Google Scholar 

  97. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    ADS  Google Scholar 

  98. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    ADS  Google Scholar 

  99. Andreani, L. C., Panzarini, G. & Gerard, J. M. Strong-coupling regime for quantum boxes in pillar microcavities: theory. Phys. Rev. B 60, 13276–13279 (1999).

    ADS  Google Scholar 

  100. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    ADS  Google Scholar 

  101. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    ADS  Google Scholar 

  102. Yokoyama, H. Physics and device applications of optical microcavities. Science 256, 66–70 (1992).

    ADS  Google Scholar 

  103. Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012).

    ADS  Google Scholar 

  104. Yokoyama, H. & Brorson, S. D. Rate-equation analysis of microcavity lasers. J. Appl. Phys. 66, 4801–4805 (1989).

    ADS  Google Scholar 

  105. Salehzadeh, O., Djavid, M., Tran, N. H., Shih, I. & Mi, Z. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett. 15, 5302–5306 (2015).

    ADS  Google Scholar 

  106. Chernikov, A., Ruppert, C., Hill, H. M., Rigosi, A. F. & Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nature Photon. 9, 466–470 (2015).

    ADS  Google Scholar 

  107. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008).

    ADS  Google Scholar 

  108. O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    ADS  Google Scholar 

  109. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nature Nanotech. 10, 507–511 (2015).

    ADS  Google Scholar 

  110. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nature Nanotech. 10, 497–502 (2015).

    ADS  Google Scholar 

  111. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nature Nanotech. 10, 503–506 (2015).

    ADS  Google Scholar 

  112. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2 . Nature Nanotech. 10, 491–496 (2015).

    ADS  Google Scholar 

  113. Aharonovich, I., Greentree, A. D. & Prawer, S. Diamond photonics. Nature Photon. 5, 397–405 (2011).

    ADS  Google Scholar 

  114. Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    ADS  Google Scholar 

  115. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nature Nanotech. 10, 534–540 (2015).

    ADS  Google Scholar 

  116. Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372–377 (2014).

    ADS  Google Scholar 

  117. Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nature Nanotech. 10, 517–521 (2015).

    ADS  Google Scholar 

  118. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotech. 9, 682–686 (2014).

    ADS  Google Scholar 

  119. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nature Commun. 6, 6242 (2015).

    ADS  Google Scholar 

  120. Malard, L. M., Alencar, T. V., Barboza, A. P. M., Mak, K. F. & de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 87, 201401 (2013).

    ADS  Google Scholar 

  121. Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nature Nanotech. 10, 407–411 (2015).

    ADS  Google Scholar 

  122. Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    ADS  Google Scholar 

  123. Kumar, N. et al. Second harmonic microscopy of monolayer MoS2 . Phys. Rev. B 87, 161403 (2013).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the US Department of Energy, Office of Basic Energy Sciences under contracts DESC0013883 (K.F.M.) and DESC0012635, the National Science Foundation under awards DMR-1410407 and 1420451, and the Air Force Office of Scientific Research under grant FA9550-14-1-0268 (J.S.) for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kin Fai Mak or Jie Shan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mak, K., Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photon 10, 216–226 (2016). https://doi.org/10.1038/nphoton.2015.282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing