Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lead sulphide nanocrystal photodetector technologies

Abstract

Light detection is the underlying principle of many optoelectronic systems. For decades, semiconductors including silicon carbide, silicon, indium gallium arsenide and germanium have dominated the photodetector industry. They can show excellent photosensitivity but are limited by one or more aspects, such as high production cost, high-temperature processing, flexible substrate incompatibility, limited spectral range or a requirement for cryogenic cooling for efficient operation. Recently lead sulphide (PbS) nanocrystals have emerged as one of the most promising new materials for photodetector fabrication. They offer several advantages including low-cost manufacturing, solution processability, size-tunable spectral sensitivity and flexible substrate compatibility, and they have achieved figures of merit outperforming conventional photodetectors. We review the underlying concepts, breakthroughs and remaining challenges in photodetector technologies based on PbS nanocrystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tunable optical properties of PbS nanocrystals.
Figure 2: Device architecture and configuration of PbS NC-based photodetectors.
Figure 3: Charge transport in PbS NC films under dark and photoexcited conditions.
Figure 4: Applications of PbS NC-based photodetector devices.

Similar content being viewed by others

References

  1. Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nature Nanotech. 5, 391–400 (2010).

    ADS  Google Scholar 

  2. Kang, I. & Wise, F. W. Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B 14, 1632–1646 (1997).

    ADS  Google Scholar 

  3. Klimov, V. I. Nanocrystal Quantum Dots (CRC, 2010).

    Google Scholar 

  4. Moreels, I. et al. Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. ACS Nano 5, 2004–2012 (2011).

    Google Scholar 

  5. Giansante, C. et al. 'Darker-than-black' PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. J. Am. Chem. Soc. 137, 1875–1886 (2015).

    Google Scholar 

  6. Zhang, J. et al. Synthetic conditions for high-accuracy size control of PbS quantum dots. J. Phys. Chem. Lett. 6, 1830–1833 (2015).

    Google Scholar 

  7. Weidman, M. C., Beck, M. E., Hoffman, R. S., Prins, F. & Tisdale, W. A. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 8, 6363–6371 (2014).

    Google Scholar 

  8. Ning, Z. et al. Air-stable n-type colloidal quantum dot solids. Nature Mater. 13, 822–828 (2014).

    ADS  Google Scholar 

  9. Lee, S.-M., Jun, Y.-w., Cho, S.-N. & Cheon, J. Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks. J. Am. Chem. Soc. 124, 11244–11245 (2002).

    Google Scholar 

  10. Moreels, I. et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3, 3023–3030 (2009).

    Google Scholar 

  11. Jasieniak, J., Califano, M. & Watkins, S. E. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 5, 5888–5902 (2011).

    Google Scholar 

  12. Nordin, M. N., Bourdakos, K. N. & Curry, R. J. Charge transfer in hybrid organic–inorganic PbS nanocrystal systems. Phys. Chem. Chem. Phys. 12, 7371–7377 (2010).

    Google Scholar 

  13. Moreels, I. et al. Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers–Krönig analysis of the absorbance spectrum. Phys. Rev. B 81, 235319 (2010).

    ADS  Google Scholar 

  14. Zhitomirsky, D. et al. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nature Commun. 5, 3803 (2014).

    ADS  Google Scholar 

  15. Carey, G. H., Levina, L., Comin, R., Voznyy, O. & Sargent, E. H. Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation. Adv. Mater. 27, 3325–3330 (2015).

    Google Scholar 

  16. Stavrinadis, A. et al. Heterovalent cation substitutional doping for quantum dot homojunction solar cells. Nature Commun. 4, 2981 (2013).

    ADS  Google Scholar 

  17. Bisri, S. Z., Piliego, C., Yarema, M., Heiss, W. & Loi, M. A. Low driving voltage and high mobility ambipolar field-effect transistors with PbS colloidal nanocrystals. Adv. Mater. 25, 4309–4314 (2013).

    Google Scholar 

  18. Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542–1544 (2009).

    ADS  Google Scholar 

  19. Brown, P. R. et al. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8, 5863–5872 (2014).

    Google Scholar 

  20. McDonald, S. A., Cyr, P. W., Levina, L. & Sargent, E. H. Photoconductivity from PbS-nanocrystal/semiconducting polymer composites for solution-processible, quantum-size tunable infrared photodetectors. Appl. Phys. Lett. 85, 2089–2091 (2004).

    ADS  Google Scholar 

  21. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  ADS  Google Scholar 

  22. Konstantatos, G., Clifford, J., Levina, L. & Sargent, E. H. Sensitive solution-processed visible-wavelength photodetectors. Nature Photon. 1, 531–534 (2007).

    ADS  Google Scholar 

  23. Konstantatos, G., Levina, L., Fischer, A. & Sargent, E. H. Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett. 8, 1446–1450 (2008).

    ADS  Google Scholar 

  24. Hinds, S. et al. Smooth-morphology ultrasensitive solution-processed photodetectors. Adv. Mater. 20, 4398–4402 (2008).

    Google Scholar 

  25. Clifford, J. P. et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nature Nanotech. 4, 40–44 (2009).

    ADS  Google Scholar 

  26. McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Mater. 4, 138–142 (2005).

    ADS  Google Scholar 

  27. Dissanayake, D. M. N. M. et al. A PbS nanocrystal–C60 photovoltaic device for infrared light harvesting. Appl. Phys. Lett. 91, 133506 (2007).

    ADS  Google Scholar 

  28. Petritz, R. L. Theory of photoconductivity in semiconductor films. Phys. Rev. 104, 1508–1516 (1956).

    ADS  Google Scholar 

  29. Bube, R. H. Photoconductivity of Solids (Wiley, 1960).

    MATH  Google Scholar 

  30. Konstantatos, G. & Sargent, E. H. PbS colloidal quantum dot photoconductive photodetectors: transport, traps, and gain. Appl. Phys. Lett. 91, 173505 (2007).

    ADS  Google Scholar 

  31. Bozyigit, D., Volk, S., Yarema, O. & Wood, V. Quantification of deep traps in nanocrystal solids, their electronic properties, and their influence on device behavior. Nano Lett. 13, 5284–5288 (2013).

    ADS  Google Scholar 

  32. Bozyigit, D., Jakob, M., Yarema, O. & Wood, V. Deep level transient spectroscopy (DLTS) on colloidal-synthesized nanocrystal solids. ACS Appl. Mater. Interfaces 5, 2915–2919 (2013).

    Google Scholar 

  33. Nagpal, P. & Klimov, V. I. Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films. Nature Commun. 2, 486 (2011).

    ADS  Google Scholar 

  34. Kim, D., Kim, D.-H., Lee, J.-H. & Grossman, J. C. Impact of stoichiometry on the electronic structure of PbS quantum dots. Phys. Rev. Lett. 110, 196802 (2013).

    ADS  Google Scholar 

  35. Ip, A. H. et al. Hybrid passivated colloidal quantum dot solids. Nature Nanotech. 7, 577–582 (2012).

    ADS  Google Scholar 

  36. Chen, H.-Y., LoMichael, K. F., Yang, G., Monbouquette, H. G. & Yang, Y. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nature Nanotech. 3, 543–547 (2008).

    ADS  Google Scholar 

  37. Guo, F. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nature Nanotech. 7, 798–802 (2012).

    ADS  Google Scholar 

  38. Wei, H., Fang, Y., Yuan, Y., Shen, L. & Huang, J. Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT:CdTe nanocomposite photodetectors. Adv. Mater. 27, 4975–4981 (2015).

    Google Scholar 

  39. Kim, D. Y., Ryu, J., Manders, J., Lee, J. & So, F. Air-stable, solution-processed oxide p–n heterojunction ultraviolet photodetector. ACS Appl. Mater. Interfaces 6, 1370–1374 (2014).

    Google Scholar 

  40. García de Arquer, F. P., Lasanta, T., Bernechea, M. & Konstantatos, G. Tailoring the electronic properties of colloidal quantum dots in metal–semiconductor nanocomposites for high performance photodetectors. Small 11, 2636–2641 (2015).

    Google Scholar 

  41. Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    Google Scholar 

  42. Kim, Y. et al. Competition between charge transport and energy barrier in injection-limited metal/quantum dot nanocrystal contacts. Chem. Mater. 26, 6393–6400 (2014).

    Google Scholar 

  43. Zhang, Y. et al. Charge percolation pathways guided by defects in quantum dot solids. Nano Lett. 15, 3249–3253 (2015).

    ADS  Google Scholar 

  44. He, J. et al. Synergetic effect of silver nanocrystals applied in PbS colloidal quantum dots for high-performance infrared photodetectors. ACS Photon. 1, 936–943 (2014).

    Google Scholar 

  45. Bozyigit, D., Lin, W. M. M., Yazdani, N., Yarema, O. & Wood, V. A quantitative model for charge carrier transport, trapping and recombination in nanocrystal-based solar cells. Nature Commun. 6, 6180 (2015).

    ADS  Google Scholar 

  46. Bozyigit, D. & Wood, V. Electrical characterization of nanocrystal solids. J. Mater. Chem. C 2, 3172–3184 (2014).

    Google Scholar 

  47. Osedach, T. P. et al. Interfacial recombination for fast operation of a planar organic/QD infrared photodetector. Adv. Mater. 22, 5250–5254 (2010).

    Google Scholar 

  48. Szendrei, K. et al. Solution-processable near-IR photodetectors based on electron transfer from PbS nanocrystals to fullerene derivatives. Adv. Mater. 21, 683–687 (2009).

    Google Scholar 

  49. Saran, R., Nordin, M. N. & Curry, R. J. Facile fabrication of PbS nanocrystal:C60 fullerite broadband photodetectors with high detectivity. Adv. Funct. Mater. 23, 4149–4155 (2013).

    Google Scholar 

  50. El-Ballouli, A. O. et al. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C61-butyric acid methyl ester interface. J. Am. Chem. Soc. 136, 6952–6959 (2014).

    Google Scholar 

  51. Gocalińska, A. et al. Size-dependent electron transfer from colloidal PbS nanocrystals to fullerene. J. Phys. Chem. Lett. 1, 1149–1154 (2010).

    Google Scholar 

  52. Klem, E. J. D. et al. Room temperature SWIR sensing from colloidal quantum dot photodiode arrays. Proc. SPIE 8704, 870436 (2013).

    Google Scholar 

  53. Saran, R., Stolojan, V. & Curry, R. J. Ultrahigh performance C60 nanorod large area flexible photoconductor devices via ultralow organic and inorganic photodoping. Sci. Rep. 4, 5041 (2014).

    ADS  Google Scholar 

  54. Biebersdorf, A. et al. Semiconductor nanocrystals photosensitize C60 crystals. Nano Lett. 6, 1559–1563 (2006).

    ADS  Google Scholar 

  55. Wei, L., Yao, J. & Fu, H. Solvent-assisted self-assembly of fullerene into single-crystal ultrathin microribbons as highly sensitive UV–visible photodetectors. ACS Nano 7, 7573–7582 (2013).

    Google Scholar 

  56. Yang, J. et al. Reduced graphene oxide (rGO)-wrapped fullerene (C60) wires. ACS Nano 5, 8365–8371 (2011).

    Google Scholar 

  57. Meshot, E. R. et al. Photoconductive hybrid films via directional self-assembly of C60 on aligned carbon nanotubes. Adv. Funct. Mater. 22, 577–584 (2012).

    Google Scholar 

  58. Itskos, G. et al. Optical properties of organic semiconductor blends with near-infrared quantum-dot sensitizers for light harvesting applications. Adv. Energy Mater. 1, 802–812 (2011).

    Google Scholar 

  59. Jarzab, D. et al. Charge-separation dynamics in inorganic–organic ternary blends for efficient infrared photodiodes. Adv. Funct. Mater. 21, 1988–1992 (2011).

    Google Scholar 

  60. Noone, K. M. et al. Photoinduced charge transfer and polaron dynamics in polymer and hybrid photovoltaic thin films: organic vs inorganic acceptors. J. Phys. Chem. C 115, 24403–24410 (2011).

    Google Scholar 

  61. Lan, X., Masala, S. & Sargent, E. H. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nature Mater. 13, 233–240 (2014).

    ADS  Google Scholar 

  62. Dissanayake, D. M. N. M., Hatton, R. A., Lutz, T., Curry, R. J. & Silva, S. R. P. Charge transfer between acenes and PbS nanocrystals. Nanotechnology 20, 195205 (2009).

    ADS  Google Scholar 

  63. Feng, W. et al. A layer-nanostructured assembly of PbS quantum dot/multiwalled carbon nanotube for a high-performance photoswitch. Sci. Rep. 4, 3777 (2014).

    Google Scholar 

  64. Gao, L. et al. Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film. Appl. Phys. Lett. 105, 153702 (2014).

    ADS  Google Scholar 

  65. Ka, I., Le Borgne, V., Ma, D. & El Khakani, M. A. Pulsed laser ablation based direct synthesis of single-wall carbon nanotube/PbS quantum dot nanohybrids exhibiting strong, spectrally wide and fast photoresponse. Adv. Mater. 24, 6289–6294 (2012).

    Google Scholar 

  66. Pelayo García de Arquer, F., Beck, F. J., Bernechea, M. & Konstantatos, G. Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors. Appl. Phys. Lett. 100, 043101 (2012).

    ADS  Google Scholar 

  67. Beck, F. J., Garcia de Arquer, F. P., Bernechea, M. & Konstantatos, G. Electrical effects of metal nanoparticles embedded in ultra-thin colloidal quantum dot films. Appl. Phys. Lett. 101, 041103 (2012).

    ADS  Google Scholar 

  68. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotech. 7, 363–368 (2012).

    ADS  Google Scholar 

  69. Turyanska, L. et al. Ligand-induced control of photoconductive gain and doping in a hybrid graphene–quantum dot transistor. Adv. Electron. Mater. 1, 1500062 (2015).

    Google Scholar 

  70. Sun, Z. et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883 (2012).

    ADS  Google Scholar 

  71. Zhang, D. et al. Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor. Adv. Mater. 24, 2715–2720 (2012).

    Google Scholar 

  72. Huang, Y. Q., Zhu, R. J., Kang, N., Du, J. & Xu, H. Q. Photoelectrical response of hybrid graphene–PbS quantum dot devices. Appl. Phys. Lett. 103, 143119 (2013).

    ADS  Google Scholar 

  73. Kufer, D. et al. Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Adv. Mater. 27, 176–180 (2015).

    Google Scholar 

  74. Adinolfi, V. et al. Photojunction field-effect transistor based on a colloidal quantum dot absorber channel layer. ACS Nano 9, 356–362 (2015).

    Google Scholar 

  75. Yoo, J., Jeong, S., Kim, S. & Je, J. H. A stretchable nanowire UV–vis–NIR photodetector with high performance. Adv. Mater. 27, 1712–1717 (2015).

    Google Scholar 

  76. Rauch, T. et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nature Photon. 3, 332–336 (2009).

    ADS  Google Scholar 

  77. Dong, R. et al. An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain. Adv. Opt. Mater. 2, 549–554 (2014).

    ADS  Google Scholar 

  78. Pal, B. N. et al. High-sensitivity p–n junction photodiodes based on PbS nanocrystal quantum dots. Adv. Funct. Mater. 22, 1741–1748 (2012).

    Google Scholar 

  79. Lee, J. W., Kim, D. Y. & So, F. Unraveling the gain mechanism in high performance solution-processed PbS infrared PIN photodiodes. Adv. Funct. Mater. 25, 1233–1238 (2015).

    Google Scholar 

  80. Manders, J. R. et al. Low-noise multispectral photodetectors made from all solution-processed inorganic semiconductors. Adv. Funct. Mater. 24, 7205–7210 (2014).

    Google Scholar 

  81. Ray, N., Staley, N. E., Grinolds, D. D. W., Bawendi, M. G. & Kastner, M. A. Measuring ligand-dependent transport in nanopatterned PbS colloidal quantum dot arrays using charge sensing. Nano Lett. 15, 4401–4405 (2015).

    ADS  Google Scholar 

  82. Kagan, C. R. & Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nature Nanotech. 10, 1013–1026 (2015).

    ADS  Google Scholar 

  83. Yazdani, N., Bozyigit, D., Yarema, O., Yarema, M. & Wood, V. Hole mobility in nanocrystal solids as a function of constituent nanocrystal size. J. Phys. Chem. Lett. 5, 3522–3527 (2014).

    Google Scholar 

  84. Choi, H., Ko, J.-H., Kim, Y.-H. & Jeong, S. Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability. J. Am. Chem. Soc. 135, 5278–5281 (2013).

    Google Scholar 

  85. Tang, J. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Mater. 10, 765–771 (2011).

    ADS  Google Scholar 

  86. Sandeep, C. S. S. et al. Epitaxially connected PbSe quantum-dot films: controlled neck formation and optoelectronic properties. ACS Nano 8, 11499–11511 (2014).

    Google Scholar 

  87. Lam, B., Zhou, W., Kelley, S. O. & Sargent, E. H. Programmable definition of nanogap electronic devices using self-inhibited reagent depletion. Nature Commun. 6, 6940 (2015).

    ADS  Google Scholar 

  88. Prins, F. et al. Fast and efficient photodetection in nanoscale quantum-dot junctions. Nano Lett. 12, 5740–5743 (2012).

    ADS  Google Scholar 

  89. Diedenhofen, S. L., Kufer, D., Lasanta, T. & Konstantatos, G. Integrated colloidal quantum dot photodetectors with color-tunable plasmonic nanofocusing lenses. Light Sci. Appl. 4, e234 (2015).

    ADS  Google Scholar 

  90. Kim, J. Y. et al. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films. Nature Commun. 6, 7772 (2015).

    ADS  Google Scholar 

  91. Geyer, S. M., Scherer, J. M., Moloto, N., Jaworski, F. B. & Bawendi, M. G. Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications. ACS Nano 5, 5566–5571 (2011).

    Google Scholar 

  92. Masala, S. et al. The silicon:colloidal quantum dot heterojunction. Adv. Mater. 27, 7445–7450 (2015).

    Google Scholar 

  93. Sandeep, C. S. S. et al. High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films. Nature Commun. 4, 2360 (2013).

    ADS  Google Scholar 

  94. Hu, C. et al. Air-stable short-wave infrared PbS colloidal quantum dot photoconductors passivated with Al2O3 atomic layer deposition. Appl. Phys. Lett. 105, 171110 (2014).

    ADS  Google Scholar 

  95. Klem, E. J. D., Gregory, C., Temple, D. & Lewis, J. et al. PbS colloidal quantum dot photodiodes for low-cost SWIR sensing. Proc. SPIE 9451, 945104 (2015).

    Google Scholar 

  96. Klem, E. J. D. et al. High-performance SWIR sensing from colloidal quantum dot photodiode arrays. Proc. SPIE 8868, 886806 (2013).

    Google Scholar 

  97. Liu, H. et al. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 26, 2718–2724 (2014).

    ADS  Google Scholar 

  98. Li, M. et al. Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection. Sensor Actuat. B 217, 198–201 (2015).

    Google Scholar 

  99. Yakunin, S. et al. High infrared photoconductivity in films of arsenic-sulfide-encapsulated lead-sulfide nanocrystals. ACS Nano 8, 12883–12894 (2014).

    Google Scholar 

  100. He, J. et al. Investigations on the morphology, optical and photoresponse properties of PbS/CdS binary colloidal quantum dot thin film. J. Mater. Sci. Mater. Electron. 25, 2516–2521 (2014).

    Google Scholar 

  101. He, J. et al. Flexible lead sulfide colloidal quantum dot photodetector using pencil graphite electrodes on paper substrates. J. Alloys Compd. 596, 73–78 (2014).

    Google Scholar 

  102. Shengyi, Y. et al. Field-effect transistor-based solution-processed colloidal quantum dot photodetector with broad bandwidth into near-infrared region. Nanotechnology 23, 255203 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/M015513/1.

Author information

Authors and Affiliations

Authors

Contributions

R.S. and R.J.C. co-wrote the paper.

Corresponding authors

Correspondence to Rinku Saran or Richard J. Curry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saran, R., Curry, R. Lead sulphide nanocrystal photodetector technologies. Nature Photon 10, 81–92 (2016). https://doi.org/10.1038/nphoton.2015.280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing