Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical manipulation of the Berry phase in a solid-state spin qubit

Abstract

Phase relations between quantum states represent a resource for storing and processing quantum information. Although quantum phases are commonly controlled dynamically by tuning energetic interactions, the use of geometric phases that accumulate during cyclic evolution may offer superior robustness to noise. To date, demonstrations of geometric phase in solid-state systems employ microwave fields that have limited spatial resolution. Here, we demonstrate an all-optical method to accumulate a geometric phase, the Berry phase, in an individual nitrogen–vacancy centre in diamond. Using stimulated Raman adiabatic passage controlled by diffraction-limited laser light, we loop the nitrogen–vacancy centre's spin around the Bloch sphere to enclose an arbitrary Berry phase. We investigate the limits of this control due to the loss of adiabaticity and decoherence, as well as its robustness to noise introduced into the experimental control parameters. These techniques set the foundation for optical geometric manipulation in photonic networks of solid-state qubits linked and controlled by light.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Driving the |A2〉 Λ system.
Figure 2: Characterizing phase-controlled STIRAP in the NV centre.
Figure 3: Optically accumulated Berry phase.
Figure 4: Exploring the dynamic and Berry phases.
Figure 5: Noise robustness of the Berry phase.

References

  1. 1

    Pancharatnam, S. Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. A 44, 247–262 (1956).

    MathSciNet  Article  Google Scholar 

  2. 2

    Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    De Chiara, G. & Palma, G. M. Berry phase for a spin 1/2 particle in a classical fluctuating field. Phys. Rev. Lett. 91, 090404 (2003).

    ADS  Article  Google Scholar 

  4. 4

    Berger, S. et al. Exploring the effect of noise on the Berry phase. Phys. Rev. A 87, 060303 (2013).

    ADS  Article  Google Scholar 

  5. 5

    Zanardi, P. & Rasetti, M. Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    Duan, L. M., Cirac, J. I. & Zoller, P. Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001).

    ADS  Article  Google Scholar 

  7. 7

    Anandan, J. Non-adiabatic non-Abelian geometric phase. Phys. Lett. A 133, 171–175 (1988).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8

    Jones, J., Vedral, V., Ekert, A. & Castagnoli, G. Geometric quantum computation using nuclear magnetic resonance. Nature 403, 869–871 (2000).

    ADS  Article  Google Scholar 

  9. 9

    Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003).

    ADS  Article  Google Scholar 

  10. 10

    Leek, P. J. et al. Observation of Berry's phase in a solid-state qubit. Science 318, 1889–1892 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11

    Abdumalikov, A. A. Jr et al. Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482–485 (2013).

    ADS  Article  Google Scholar 

  12. 12

    Zu, C. et al. Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514, 72–75 (2014).

    ADS  Article  Google Scholar 

  13. 13

    Arroyo-Camejo, S., Lazariev, A., Hell, S. W. & Balasubramanian, G. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin. Nature Commun. 5, 4870 (2014).

    ADS  Article  Google Scholar 

  14. 14

    Zhang, K., Nusran, N. M., Slezak, B. R. & Dutt, M. V. G. Measurement of the Berry phase in a single solid-state spin qubit. Preprint at http://arxiv.org/abs/1410.2791 (2014).

  15. 15

    Lončar, M. & Faraon, A. Quantum photonic networks in diamond. MRS Bull. 38, 144–148 (2013).

    Article  Google Scholar 

  16. 16

    Toyli, D. M., Weis, C. D., Fuchs, G. D., Schenkel, T. & Awschalom, D. D. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett. 10, 3168–3172 (2010).

    ADS  Article  Google Scholar 

  17. 17

    Toyoda, K., Uchida, K., Noguchi, A., Haze, S. & Urabe, S. Realization of holonomic single-qubit operations. Phys. Rev. A 87, 052307 (2013).

    ADS  Article  Google Scholar 

  18. 18

    Kis, Z. & Renzoni, F. Qubit rotation by stimulated Raman adiabatic passage. Phys. Rev. A 65, 032318 (2002).

    ADS  Article  Google Scholar 

  19. 19

    Møller, D., Madsen, L. B. & Mølmer, K. Geometric phase gates based on stimulated Raman adiabatic passage in tripod systems. Phys. Rev. A 75, 062302 (2007).

    ADS  Article  Google Scholar 

  20. 20

    Gaubatz, U., Rudecki, P., Schiemann, S. & Bergmann, K. Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results. J. Chem. Phys. 92, 5363–5376 (1990).

    ADS  Article  Google Scholar 

  21. 21

    Bergmann, K., Theuer, H. & Shore, B. W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998).

    ADS  Article  Google Scholar 

  22. 22

    Goto, H. & Ichimura, K. Population transfer via stimulated Raman adiabatic passage in a solid. Phys. Rev. A 74, 053410 (2006).

    ADS  Article  Google Scholar 

  23. 23

    Golter, D. A. & Wang, H. Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond. Phys. Rev. Lett. 112, 116403 (2014).

    ADS  Article  Google Scholar 

  24. 24

    Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    ADS  Article  Google Scholar 

  25. 25

    Batalov, A. et al. Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. Phys. Rev. Lett. 102, 195506 (2009).

    ADS  Article  Google Scholar 

  26. 26

    Gao, W. B., Imamoglu, A., Bernien, H. & Hanson, R. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nature Photon. 9, 363–373 (2015).

    ADS  Article  Google Scholar 

  27. 27

    Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    ADS  Article  Google Scholar 

  28. 28

    Kosaka, H. & Niikura, N. Entangled absorption of a single photon with a single spin in diamond. Phys. Rev. Lett. 114, 053603 (2015).

    ADS  Article  Google Scholar 

  29. 29

    Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010).

    ADS  Article  Google Scholar 

  30. 30

    Yale, C. G. et al. All-optical control of a solid-state spin using coherent dark states. Proc. Natl Acad. Sci. USA 110, 7595–7600 (2013).

    ADS  Article  Google Scholar 

  31. 31

    Bassett, L. C. et al. Ultrafast optical control of orbital and spin dynamics in a solid-state defect. Science 345, 1333–1337 (2014).

    ADS  Article  Google Scholar 

  32. 32

    Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    ADS  Article  Google Scholar 

  33. 33

    Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  34. 34

    Santori, C. et al. Coherent population trapping of single spins in diamond under optical excitation. Phys. Rev. Lett. 97, 247401 (2006).

    ADS  Article  Google Scholar 

  35. 35

    Pingault, B. et al. All-optical formation of coherent dark states of silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263601 (2014).

    ADS  Article  Google Scholar 

  36. 36

    Rogers, L. J. et al. All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263602 (2014).

    ADS  Article  Google Scholar 

  37. 37

    Riedrich-Möller, J. et al. Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. Nano Lett. 14, 5281–5287 (2014).

    ADS  Article  Google Scholar 

  38. 38

    Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nature Mater. 14, 160–163 (2015).

    ADS  Article  Google Scholar 

  39. 39

    Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nature Mater. 14, 164–168 (2015).

    ADS  Article  Google Scholar 

  40. 40

    Jungwirth, N. R. et al. A single-molecule approach to ZnO defect studies: single photons and single defects. J. Appl. Phys. 116, 043509 (2014).

    ADS  Article  Google Scholar 

  41. 41

    Kolesov, R. Coherent population trapping in a crystalline solid at room temperature. Phys. Rev. A 72, 051801 (2005).

    ADS  Article  Google Scholar 

  42. 42

    Xia, K. et al. All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal. Phys. Rev. Lett. 115, 093602 (2015).

    ADS  Article  Google Scholar 

  43. 43

    Hansom, J. et al. Environment-assisted quantum control of a solid-state spin via coherent dark states. Nature Phys. 10, 725–730 (2014).

    ADS  Article  Google Scholar 

  44. 44

    López, C. Materials aspects of photonic crystals. Adv. Mater. 15, 1679–1704 (2003).

    ADS  Article  Google Scholar 

  45. 45

    Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank C.P. Anderson, B.B. Buckley, D.J. Christle and C.F. de las Casas for discussions and H.L. Bretscher for experimental assistance. This work was supported by the Air Force Office of Scientific Research (FA9550-14-1-0231 and FA9550-15-1-0029), the National Science Foundation (NSF-DMR-1306300) and the German Research Foundation (SFB 767).

Author information

Affiliations

Authors

Contributions

C.G.Y., F.J.H. and B.B.Z. performed the experiments. A.A. and G.B. developed the theoretical simulations. All authors contributed to the data analysis and writing of the paper.

Corresponding author

Correspondence to David D. Awschalom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yale, C., Heremans, F., Zhou, B. et al. Optical manipulation of the Berry phase in a solid-state spin qubit. Nature Photon 10, 184–189 (2016). https://doi.org/10.1038/nphoton.2015.278

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing