Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical manipulation of the Berry phase in a solid-state spin qubit

Abstract

Phase relations between quantum states represent a resource for storing and processing quantum information. Although quantum phases are commonly controlled dynamically by tuning energetic interactions, the use of geometric phases that accumulate during cyclic evolution may offer superior robustness to noise. To date, demonstrations of geometric phase in solid-state systems employ microwave fields that have limited spatial resolution. Here, we demonstrate an all-optical method to accumulate a geometric phase, the Berry phase, in an individual nitrogen–vacancy centre in diamond. Using stimulated Raman adiabatic passage controlled by diffraction-limited laser light, we loop the nitrogen–vacancy centre's spin around the Bloch sphere to enclose an arbitrary Berry phase. We investigate the limits of this control due to the loss of adiabaticity and decoherence, as well as its robustness to noise introduced into the experimental control parameters. These techniques set the foundation for optical geometric manipulation in photonic networks of solid-state qubits linked and controlled by light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Driving the |A2〉 Λ system.
Figure 2: Characterizing phase-controlled STIRAP in the NV centre.
Figure 3: Optically accumulated Berry phase.
Figure 4: Exploring the dynamic and Berry phases.
Figure 5: Noise robustness of the Berry phase.

Similar content being viewed by others

References

  1. Pancharatnam, S. Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. A 44, 247–262 (1956).

    Article  MathSciNet  Google Scholar 

  2. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  3. De Chiara, G. & Palma, G. M. Berry phase for a spin 1/2 particle in a classical fluctuating field. Phys. Rev. Lett. 91, 090404 (2003).

    Article  ADS  Google Scholar 

  4. Berger, S. et al. Exploring the effect of noise on the Berry phase. Phys. Rev. A 87, 060303 (2013).

    Article  ADS  Google Scholar 

  5. Zanardi, P. & Rasetti, M. Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  6. Duan, L. M., Cirac, J. I. & Zoller, P. Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001).

    Article  ADS  Google Scholar 

  7. Anandan, J. Non-adiabatic non-Abelian geometric phase. Phys. Lett. A 133, 171–175 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  8. Jones, J., Vedral, V., Ekert, A. & Castagnoli, G. Geometric quantum computation using nuclear magnetic resonance. Nature 403, 869–871 (2000).

    Article  ADS  Google Scholar 

  9. Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003).

    Article  ADS  Google Scholar 

  10. Leek, P. J. et al. Observation of Berry's phase in a solid-state qubit. Science 318, 1889–1892 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  11. Abdumalikov, A. A. Jr et al. Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482–485 (2013).

    Article  ADS  Google Scholar 

  12. Zu, C. et al. Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514, 72–75 (2014).

    Article  ADS  Google Scholar 

  13. Arroyo-Camejo, S., Lazariev, A., Hell, S. W. & Balasubramanian, G. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin. Nature Commun. 5, 4870 (2014).

    Article  ADS  Google Scholar 

  14. Zhang, K., Nusran, N. M., Slezak, B. R. & Dutt, M. V. G. Measurement of the Berry phase in a single solid-state spin qubit. Preprint at http://arxiv.org/abs/1410.2791 (2014).

  15. Lončar, M. & Faraon, A. Quantum photonic networks in diamond. MRS Bull. 38, 144–148 (2013).

    Article  Google Scholar 

  16. Toyli, D. M., Weis, C. D., Fuchs, G. D., Schenkel, T. & Awschalom, D. D. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett. 10, 3168–3172 (2010).

    Article  ADS  Google Scholar 

  17. Toyoda, K., Uchida, K., Noguchi, A., Haze, S. & Urabe, S. Realization of holonomic single-qubit operations. Phys. Rev. A 87, 052307 (2013).

    Article  ADS  Google Scholar 

  18. Kis, Z. & Renzoni, F. Qubit rotation by stimulated Raman adiabatic passage. Phys. Rev. A 65, 032318 (2002).

    Article  ADS  Google Scholar 

  19. Møller, D., Madsen, L. B. & Mølmer, K. Geometric phase gates based on stimulated Raman adiabatic passage in tripod systems. Phys. Rev. A 75, 062302 (2007).

    Article  ADS  Google Scholar 

  20. Gaubatz, U., Rudecki, P., Schiemann, S. & Bergmann, K. Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results. J. Chem. Phys. 92, 5363–5376 (1990).

    Article  ADS  Google Scholar 

  21. Bergmann, K., Theuer, H. & Shore, B. W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998).

    Article  ADS  Google Scholar 

  22. Goto, H. & Ichimura, K. Population transfer via stimulated Raman adiabatic passage in a solid. Phys. Rev. A 74, 053410 (2006).

    Article  ADS  Google Scholar 

  23. Golter, D. A. & Wang, H. Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond. Phys. Rev. Lett. 112, 116403 (2014).

    Article  ADS  Google Scholar 

  24. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  ADS  Google Scholar 

  25. Batalov, A. et al. Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. Phys. Rev. Lett. 102, 195506 (2009).

    Article  ADS  Google Scholar 

  26. Gao, W. B., Imamoglu, A., Bernien, H. & Hanson, R. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nature Photon. 9, 363–373 (2015).

    Article  ADS  Google Scholar 

  27. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Article  ADS  Google Scholar 

  28. Kosaka, H. & Niikura, N. Entangled absorption of a single photon with a single spin in diamond. Phys. Rev. Lett. 114, 053603 (2015).

    Article  ADS  Google Scholar 

  29. Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010).

    Article  ADS  Google Scholar 

  30. Yale, C. G. et al. All-optical control of a solid-state spin using coherent dark states. Proc. Natl Acad. Sci. USA 110, 7595–7600 (2013).

    Article  ADS  Google Scholar 

  31. Bassett, L. C. et al. Ultrafast optical control of orbital and spin dynamics in a solid-state defect. Science 345, 1333–1337 (2014).

    Article  ADS  Google Scholar 

  32. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  ADS  Google Scholar 

  33. Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  34. Santori, C. et al. Coherent population trapping of single spins in diamond under optical excitation. Phys. Rev. Lett. 97, 247401 (2006).

    Article  ADS  Google Scholar 

  35. Pingault, B. et al. All-optical formation of coherent dark states of silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263601 (2014).

    Article  ADS  Google Scholar 

  36. Rogers, L. J. et al. All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263602 (2014).

    Article  ADS  Google Scholar 

  37. Riedrich-Möller, J. et al. Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. Nano Lett. 14, 5281–5287 (2014).

    Article  ADS  Google Scholar 

  38. Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nature Mater. 14, 160–163 (2015).

    Article  ADS  Google Scholar 

  39. Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nature Mater. 14, 164–168 (2015).

    Article  ADS  Google Scholar 

  40. Jungwirth, N. R. et al. A single-molecule approach to ZnO defect studies: single photons and single defects. J. Appl. Phys. 116, 043509 (2014).

    Article  ADS  Google Scholar 

  41. Kolesov, R. Coherent population trapping in a crystalline solid at room temperature. Phys. Rev. A 72, 051801 (2005).

    Article  ADS  Google Scholar 

  42. Xia, K. et al. All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal. Phys. Rev. Lett. 115, 093602 (2015).

    Article  ADS  Google Scholar 

  43. Hansom, J. et al. Environment-assisted quantum control of a solid-state spin via coherent dark states. Nature Phys. 10, 725–730 (2014).

    Article  ADS  Google Scholar 

  44. López, C. Materials aspects of photonic crystals. Adv. Mater. 15, 1679–1704 (2003).

    Article  ADS  Google Scholar 

  45. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank C.P. Anderson, B.B. Buckley, D.J. Christle and C.F. de las Casas for discussions and H.L. Bretscher for experimental assistance. This work was supported by the Air Force Office of Scientific Research (FA9550-14-1-0231 and FA9550-15-1-0029), the National Science Foundation (NSF-DMR-1306300) and the German Research Foundation (SFB 767).

Author information

Authors and Affiliations

Authors

Contributions

C.G.Y., F.J.H. and B.B.Z. performed the experiments. A.A. and G.B. developed the theoretical simulations. All authors contributed to the data analysis and writing of the paper.

Corresponding author

Correspondence to David D. Awschalom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yale, C., Heremans, F., Zhou, B. et al. Optical manipulation of the Berry phase in a solid-state spin qubit. Nature Photon 10, 184–189 (2016). https://doi.org/10.1038/nphoton.2015.278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing