Letter | Published:

Terahertz modulation of the Faraday rotation by laser pulses via the optical Kerr effect

Nature Photonics volume 10, pages 111114 (2016) | Download Citation

Abstract

The magneto-optical Faraday effect played a crucial role in the elucidation of the electromagnetic nature of light. Today it is powerful means to probe magnetism and the basic operational principle of magneto-optical modulators. Understanding the mechanisms allowing for modulation of the magneto-optical response at terahertz frequencies may have far-reaching consequences for photonics1, ultrafast optomagnetism2,3,4 and magnonics5,6, as well as for future development of ultrafast Faraday modulators. Here we suggest a conceptually new approach for an ultrafast tunable magneto-optical modulation with the help of counter-propagating laser pulses. Using terbium gallium garnet (Tb3Ga5O12) we demonstrate the feasibility of such magneto-optical modulation with a frequency up to 1.1 THz, which is continuously tunable by means of an external magnetic field. Besides the novel concept for ultrafast magneto-optical polarization modulation, our findings reveal the importance of accounting for propagation effects in the interpretation of pump–probe magneto-optical experiments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photon. 8, 119–123 (2014).

  2. 2.

    Femtosecond magneto-optical processes in metals. C. R. Acad. Sci. IV 2, 1483–1504 (2001).

  3. 3.

    , & Coherent ultrafast magnetism induced by femtosecond laser pulses. Nature Phys. 5, 515–520 (2009).

  4. 4.

    , & Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

  5. 5.

    , & Magnonics. J. Phys. D 43, 264001 (2010).

  6. 6.

    et al. Optically reconfigurable magnetic materials. Nature Phys. 11, 487–491 (2015).

  7. 7.

    et al. THz near-field Faraday imaging in hybrid metamaterials. Opt. Express 20, 11277–11287 (2012).

  8. 8.

    , , & Free-space transient magneto-optic sampling. Appl. Phys. Lett. 71, 1452–1454 (1997).

  9. 9.

    et al. Coherent terahertz control of antiferromagnetic spin waves. Nature Photon. 5, 31–34 (2011).

  10. 10.

    et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

  11. 11.

    et al. Writing and reading of an arbitrary optical polarization state in an antiferromagnet. Nature Photon. 9, 25–29 (2015).

  12. 12.

    et al. Optical Tamm states in one-dimensional magnetophotonic structures. Phys. Rev. Lett. 101, 113902 (2008).

  13. 13.

    , & (eds) Magnetophotonics (from Theory to Applications) (Series in Materials Science 1782013, Springer, 2013).

  14. 14.

    , , & Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).

  15. 15.

    et al. Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses. Phys. Rev. Lett. 105, 117204 (2010).

  16. 16.

    , & Ultrafast magnetoacoustics in nickel films. Phys. Rev. Lett. 109, 166601 (2012).

  17. 17.

    , & Controlling the spins angular momentum in ferromagnets with sequences of picosecond acoustic pulses. Sci. Rep. 5, 8511 (2015).

  18. 18.

    , & Pump–probe reflective polarization-sensitive nonlinear optics. J. Opt. Soc. Am. B 13, 2729–2738 (1996).

  19. 19.

    et al. Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics. Opt. Express 15, 11255–11261 (2007).

  20. 20.

    et al. Faraday rotator properties of Tb3 (Sc1.95Lu0.05)Al3O12, a highly transparent terbium-garnet for visible-infrared optical isolators. Appl. Phys. Lett. 99, 011111 (2011).

  21. 21.

    et al. Analyses of the optical and magneto-optical spectra of Tb3Ga5O12. J. Appl. Phys. 101, 023108 (2007).

  22. 22.

    , , & Low-temperature time-domain terahertz spectroscopy of terbium gallium garnet crystals. Phys. Rev. B 87, 094414 (2013).

  23. 23.

    et al. Magnetization, magnetic susceptibility and ESR in Tb3Ga5O12. Eur. Phys. J. B 86, 87 (2013).

  24. 24.

    et al. Optical phonons of yttrium aluminum garnet. Phys. Rev. 173, 851–856 (1968).

  25. 25.

    & Electronic Raman spectroscopy and magnetic susceptibilities. Can. J. Chem. 52, 3445–3450 (1974).

  26. 26.

    , & Crystal-field splitting of the fundamental multiplet of Tb3+ in terbium aluminum garnet. J. Phys. Chem. Solids 34, 241–248 (1973).

  27. 27.

    et al. Field-induced antiferromagnetism and competition in the metamagnetic state of terbium gallium garnet. Phys. Rev. B 78, 064412 (2008).

  28. 28.

    & Step-like magnetisation curves in Tb3Ga5O12. J. Phys. C 18, 3547 (1985).

  29. 29.

    , & Magnons, magnetic polaritons, magnetostatic waves. Sov. Phys. Usp. 40, 181 (1997).

  30. 30.

    , , & Cherenkov radiation at speeds below the light threshold: phonon-assisted phase matching. Science 291, 627–630 (2001).

Download references

Acknowledgements

The authors acknowledge T. Satoh, D. Afanasev, A. Kirilyuk for valuable comments, A. Toonen for indispensable technical support. This work was supported by the European Community Seventh Framework Programme FP7-NMP-2011-SMALL-281043 (FEMTOSPIN), the European Research Council ERC Grant agreement No.257280 (Femtomagnetism), the Foundation for Fundamental Research on Matter (FOM) as well as the Netherlands Organization for Scientific Research(NWO), program “Leading Scientist” of the Russian Ministry of Education and Science (14.z50.31.0034).

Author information

Affiliations

  1. Radboud University, Institute for Molecule and Materials, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands

    • R. R. Subkhangulov
    • , R. V. Mikhaylovskiy
    • , Th. Rasing
    •  & A. V. Kimel
  2. Moscow State Technical University of Radio Engineering, Electronics and Automation, Moscow 119454, Russia

    • A. K. Zvezdin
    •  & A. V. Kimel
  3. Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia

    • A. K. Zvezdin
  4. Moscow Institute of Physics and Technology (State University), Dolgoprudny 141700, Russia

    • A. K. Zvezdin
  5. School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom

    • V. V. Kruglyak

Authors

  1. Search for R. R. Subkhangulov in:

  2. Search for R. V. Mikhaylovskiy in:

  3. Search for A. K. Zvezdin in:

  4. Search for V. V. Kruglyak in:

  5. Search for Th. Rasing in:

  6. Search for A. V. Kimel in:

Contributions

R.R.S., R.V.M., A.V.K. conceived the project. R.R.S. designed and built the experimental set up. R.R.S. and R.V.M. performed all measurements, analyzed the data. R.R.S., R.V.M., A.K.Z. developed the theoretical model with important suggestions from A.V.K.. R.R.S., R.V.M. and A.V.K co-wrote the paper with contributions from A.K.Z, Th. R. and V.V.K. The project was coordinated by A.V.K.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to R. R. Subkhangulov.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2015.249

Further reading