Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optically reconfigurable metasurfaces and photonic devices based on phase change materials

Abstract

Photonic components with adjustable parameters, such as variable-focal-length lenses or spectral filters, which can change functionality upon optical stimulation, could offer numerous useful applications. Tuning of such components is conventionally achieved by either micro- or nanomechanical actuation of their constituent parts, by stretching or by heating. Here, we report a novel approach for making reconfigurable optical components that are created with light in a non-volatile and reversible fashion. Such components are written, erased and rewritten as two-dimensional binary or greyscale patterns into a nanoscale film of phase-change material by inducing a refractive-index-changing phase transition with tailored trains of femtosecond pulses. We combine germanium–antimony–tellurium-based films with a diffraction-limited resolution optical writing process to demonstrate a variety of devices: visible-range reconfigurable bichromatic and multi-focus Fresnel zone plates, a super-oscillatory lens with subwavelength focus, a greyscale hologram, and a dielectric metamaterial with on-demand reflection and transmission resonances.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Writing of reconfigurable photonic devices in a phase-change film (artistic impression).
Figure 2: Binary and greyscale devices optically written in the phase-change film.
Figure 3: Writing planar wavelength multiplexing focusing devices.
Figure 4: Dynamically optically reconfigurable zone-plate device.
Figure 5: Writing a dielectric metamaterial.

References

  1. Papakostas, A. et al. Optical manifestations of planar chirality. Phys. Rev. Lett. 90, 107404 (2003).

    ADS  Article  Google Scholar 

  2. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    ADS  Article  Google Scholar 

  3. Sun, S. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223–6229 (2012).

    ADS  Article  Google Scholar 

  4. Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012).

    ADS  Article  Google Scholar 

  5. Wu, C. et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nature Commun. 5, 3892 (2014).

    ADS  Article  Google Scholar 

  6. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Nonlinear dielectric optomechanical metamaterials. Light Sci. Appl. 2, e96 (2013).

    ADS  Article  Google Scholar 

  7. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    ADS  Article  Google Scholar 

  8. Ginn, J. C. et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108, 097402 (2012).

    ADS  Article  Google Scholar 

  9. Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial. Nature Photon. 7, 791–795 (2013).

    ADS  Article  Google Scholar 

  10. Moitra, P. et al. Large-scale all-dielectric metamaterial perfect reflectors. ACS Photon. 2, 692–698 (2015).

    Article  Google Scholar 

  11. Driscoll, T. et al. Memory metamaterials. Science 325, 1518–1521 (2009).

    ADS  Article  Google Scholar 

  12. Gholipour, B., Zhang, J., Macdonald, K. F., Hewak, D. W. & Zheludev, N. I. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater. 25, 3050–3054 (2013).

    Article  Google Scholar 

  13. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature Mater. 11, 917–924 (2012).

    ADS  Article  Google Scholar 

  14. Ou, J. Y., Plum, E., Jiang, L. & Zheludev, N. I. Reconfigurable photonic metamaterials. Nano Lett. 11, 2142–2144 (2011).

    ADS  Article  Google Scholar 

  15. Tao, H. et al. Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 147401 (2009).

    ADS  Article  Google Scholar 

  16. Ou, J. Y., Plum, E., Zhang, J. & Zheludev, N. I. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nature Nanotech. 8, 252–255 (2013).

    ADS  Article  Google Scholar 

  17. Lapine, M., Shadrivov, I. V., Powell, D. A. & Kivshar, Y. S. Magnetoelastic metamaterials. Nature Mater. 11, 30–33 (2012).

    ADS  Article  Google Scholar 

  18. Valente, J., Ou, J.-Y., Plum, E., Youngs, I. J. & Zheludev, N. I. A magneto-electro-optical effect in plasmonic nanowire material. Nature Commun. 6, 7021 (2015).

    ADS  Article  Google Scholar 

  19. Pryce, I. M., Aydin, K., Kelaita, Y. A., Briggs, R. M. & Atwater, H. A. Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett. 10, 4222–4227 (2010).

    ADS  Article  Google Scholar 

  20. Zhu, W. M. et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Adv. Mater 27, 4739–4743 (2015).

    Article  Google Scholar 

  21. Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014).

    ADS  Article  Google Scholar 

  22. Gao, L.-H. et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light Sci. Appl. 4, e324 (2015).

    Article  Google Scholar 

  23. Giovampaola, C. D. & Engheta, N. Digital metamaterials. Nature Mater. 13, 1115–1121 (2014).

    ADS  Article  Google Scholar 

  24. Zheludev, N. I. Obtaining optical properties on demand. Science 348, 973–974 (2015).

    ADS  Article  Google Scholar 

  25. Karvounis, A., Ou, J.-Y., Wu, W., MacDonald, K. F. & Zheludev, N. I. Nano-optomechanical nonlinear dielectric metamaterials. Appl. Phys. Lett. 107, 191110 (2015).

    ADS  Article  Google Scholar 

  26. Lee, B. S. et al. Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases. J. Appl. Phys. 97, 093509 (2005).

    ADS  Article  Google Scholar 

  27. Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

    ADS  Article  Google Scholar 

  28. Eggleton, B. J., Davies, B. L. & Richardson, K. Chalcogenide photonics. Nature Photon. 5, 141 (2011).

    ADS  Article  Google Scholar 

  29. Wright, C. D., Liu, Y., Kohary, K. I., Aziz, M. M. & Hicken, R. J. Arithmetic and biologically-inspired computing using phase-change materials. Adv. Mater. 23, 3408–3413 (2011).

    Article  Google Scholar 

  30. Wang, Q. et al. 1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage. Appl. Phys. Lett. 104, 121105 (2014).

    ADS  Article  Google Scholar 

  31. Shportko, K. et al. bonding in crystalline phase-change materials. Nature Mater. 7, 653–658 (2008).

    ADS  Article  Google Scholar 

  32. Lu, B. R. et al. A novel 3D nanolens for sub-wavelength focusing by self-aligned nanolithography. Microelectron. Eng. 87, 1506–1508 (2010).

    Article  Google Scholar 

  33. Rogers, E. T. et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nature Mater. 11, 432–435 (2012).

    ADS  Article  Google Scholar 

  34. Jin, N. & Rahmat-Samii, Y. Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations. IEEE Trans. Antenn. Propag. 55, 556–567 (2007).

    ADS  Article  Google Scholar 

  35. Nemec, P. et al. Ge-Sb-Te thin films deposited by pulsed laser: an ellipsometry and Raman scattering spectroscopy study. J. Appl. Phys. 106, 103509 (2009).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Karvounis for assistance with computing the spectra of the dielectric metamaterial and D. Hewak for discussions. This study was supported by the Engineering and Physical Sciences Research Council UK (grant no. EP/G060363/1), the Singapore Ministry of Education (grant no. MOE2011-T3–1-005) and the Agency for Science, Technology and Research (A*STAR) of Singapore (grants nos. 122-360-0007 and 122-360-0009) and the University of Southampton Enterprise Fund. Q. Wang acknowledges fellowship support from A*STAR.

Author information

Authors and Affiliations

Authors

Contributions

N.I.Z. conceived the idea of optical reconfigurable photonics devices. Q.W. built the experimental set-up and carried out the experiments. Q.W. and E.T.F.R. designed the experimental apparatus and carried out data analysis. B.G. prepared the experimental samples. C.M.W. designed the hologram pattern. G.H.Y. designed the super-oscillatory lens and performed angular spectrum simulations. Q.W., N.I.Z. and J.H.T. co-wrote the paper. All authors discussed the results and edited the manuscript. N.I.Z. and J.H.T. supervised and coordinated all the work.

Corresponding authors

Correspondence to Qian Wang or Nikolay I. Zheludev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 929 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Rogers, E., Gholipour, B. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photon 10, 60–65 (2016). https://doi.org/10.1038/nphoton.2015.247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.247

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing