Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Laser cooling of organic–inorganic lead halide perovskites

Abstract

Optical irradiation with suitable energy can cool solids, a phenomenon known as optical refrigeration, first proposed in 1929 and experimentally achieved in ytterbium-doped glasses in 1995. Since then, considerable progress has been made in various rare earth element-doped materials, with a recent record of cooling to 91 K directly from ambient temperatures. For practical use and to suit future applications of optical refrigeration, the discovery of materials with facile and scalable synthesis and high cooling power density will be required. Herein we present the realization of a net cooling of 23.0 K in micrometre-thick 3D CH3NH3PbI3 (MAPbI3) and 58.7 K in exfoliated 2D (C6H5C2H4NH3)2PbI4 (PhEPbI4) perovskite crystals directly from room temperature. We found that the perovskite crystals exhibit strong photoluminescence upconversion and near unity external quantum efficiency, properties that are responsible for the realization of net laser cooling. Our findings indicate that solution-processed perovskite thin films may be a highly suitable candidate for constructing integrated optical cooler devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology and structural characterization of 3D and 2D perovskites.
Figure 2: Optical characterization of 3D and 2D perovskites.
Figure 3: Net laser cooling observations for 3D perovskite CH3NH3PbI3.
Figure 4: Net laser cooling observations for 2D perovskite (C6H5C2H5NH3)2PbI4.
Figure 5: A macroscopic 2D perovskite optical cooler cooling a CdSe nanobelt thermal load.
Figure 6: Condition for laser cooling in CH3NH3PbI3 platelets.

Similar content being viewed by others

References

  1. Pringsheim, P. Zwei bemerkungen über den unterschied von lumineszenz- und temperaturestrahlung. Z. Phys. A 57, 739–746 (1929).

    Article  Google Scholar 

  2. Epstein, R. I., Buchwald, M. I., Edwards, B. C., Gosnell, T. R. & Mungan, C. E. Observation of laser-induced fluorescent cooling of solid. Nature 377, 500–503 (1995).

    Article  ADS  Google Scholar 

  3. Gosnell, T. R. Laser cooling of a solid by 65K starting from room temperature. Opt. Lett. 24, 1041–1043 (1999).

    Article  ADS  Google Scholar 

  4. Melgaard, S., Seletskiy, D., Albrecht, A. & Sheik-Bahae, M. First solid-state cooling below 100K. SPIE Newsroom (13 March 2015).

  5. Seletskiy, D. V. et al. Laser cooling of solids to cryogenic temperatures. Nature Photon. 4, 161–164 (2010).

    Article  ADS  Google Scholar 

  6. Seletskiy, D. V. et al. Local laser cooling of Yb:YLF to 110 K. Opt. Express 19, 18229–18236 (2011).

    Article  ADS  Google Scholar 

  7. Gauck, H., Gfroerer, T. H., Renn, M. J., Cornell, E. A. & Bertness, K. A. External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure. Appl. Phys. A 64, 143–147 (1997).

    Article  ADS  Google Scholar 

  8. Sheik-Bahae, M. & Epstein, R. I. Can laser light cool semiconductors? Phys. Rev. Lett. 92, 247403 (2004).

    Article  ADS  Google Scholar 

  9. Sheik-Bahae, M. & Epstein, R. I. Optical refrigeration. Nature Photon. 1, 693–699 (2007).

    Article  ADS  Google Scholar 

  10. Zhang, J., Li, D., Chen, R. & Xiong, Q. H. Laser cooling of a semiconductor by 40 Kelvin. Nature 493, 504–508 (2013).

    Article  ADS  Google Scholar 

  11. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  ADS  Google Scholar 

  12. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  ADS  Google Scholar 

  13. Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  ADS  Google Scholar 

  14. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    Article  ADS  Google Scholar 

  15. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Mater. 13, 476–480 (2014).

    Article  ADS  Google Scholar 

  16. Zhang, Q., Ha, S. T., Liu, X. F., Sum, T. C. & Xiong, Q. H. Room-temperature near-infrared high-q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014).

    Article  ADS  Google Scholar 

  17. Xing, J. et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 15, 4571–4577 (2015).

    Article  ADS  Google Scholar 

  18. Dong, Q. et al. Solar cells. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  ADS  Google Scholar 

  19. Shi, D. et al. Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  ADS  Google Scholar 

  20. Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    Article  Google Scholar 

  21. Ha, S. T. et al. Synthesis of organic-inorganic lead halide perovskite nanoplatelets: Towards high performance perovskite solar cells and opto-electronic devices. Adv. Opt. Mater. 2, 838–844 (2014).

    Article  Google Scholar 

  22. Baikie, T. et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013).

    Article  Google Scholar 

  23. Roosbroeck, W. V. & Shockley, W. Photon-radiative recombination of electrons and holes in germanium. Phys. Rev. 94, ( 1954).

  24. Mosconi, E., Amat, A., Nazeeruddin, M. K., Grätzel, M. & De Angelis, F. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117, 13902–13913 (2013).

    Article  Google Scholar 

  25. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  Google Scholar 

  26. Kitazawa, N. & Watanabe, Y. Optical properties of natural quantum-well compounds (C6H5-CnH2n-NH3)2PbBr4 (n=1–4). J. Phys. Chem. Solids 71, 797–802 (2010).

    Article  ADS  Google Scholar 

  27. Lanty, G. et al. Room-temperature optical tunability and inhomogeneous broadening in 2D-layered organic-inorganic perovskite pseudobinary alloys. J. Phys. Chem. Lett. 5, 3958–3963 (2014).

    Article  Google Scholar 

  28. Imangholi, B. et al. Differential luminescence thermometry in semiconductor laser cooling. Proc. SPIE 6115, 61151C (2006).

    Google Scholar 

  29. Chen, R. et al. Excitonic properties and near-infrared coherent random lasing in vertically aligned CdSe nanowires. Adv. Mater. 23, 1404–1408 (2011).

    Article  Google Scholar 

  30. Utama, M. I. et al. Vertically aligned cadmium chalcogenide nanowire arrays on muscovite mica: a demonstration of epitaxial growth strategy. Nano Lett. 11, 3051–3057 (2011).

    Article  ADS  Google Scholar 

  31. Gray, A. S. & Uher, C. Thermal conductivity of mica at low temperatures. J. Mater. Sci. 12, 959–965 (1977).

    Article  ADS  Google Scholar 

  32. Pisoni, A. et al. Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3 . J Phys Chem Lett 5, 2488–2492 (2014).

    Article  Google Scholar 

  33. Li, D., Zhang, J., Wang, X., Huang, B. & Xiong, Q. H. Solid-state semiconductor optical cryocooler based on CdS nanobelts. Nano Lett. 14, 4724–4728 (2014).

    Article  ADS  Google Scholar 

  34. Khurgin, J. B. Band gap engineering for laser cooling of semiconductors. J. Appl. Phys. 100, 113116 (2006).

    Article  ADS  Google Scholar 

  35. Khurgin, J. B. Surface plasmon-assisted laser cooling of solids. Phys. Rev. Lett. 98, 177401 (2007).

    Article  ADS  Google Scholar 

  36. Khurgin, J. B. Role of bandtail states in laser cooling of semiconductors. Phys. Rev. B 77, 235206 (2008).

    Article  ADS  Google Scholar 

  37. Rupper, G., Kwong, N. H. & Binder, R. Large excitonic enhancement of optical refrigeration in semiconductors. Phys. Rev. Lett. 97, 117401 (2006).

    Article  ADS  Google Scholar 

  38. Wang, C. G., Li, C. Y., Hasselbeck, M. P., Imangholi, B. & Sheik-Bahae, M. Precision, all-optical measurement of external quantum efficiency in semiconductors. J. Appl. Phys. 109, 093108 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Q.X. gratefully acknowledges the strong support of this work from Singapore National Research Foundation through an Investigatorship Award (NRF-NRFI2015–03), Ministry of Education via two AcRF Tier 2 grants (MOE2013-T2-1-049 and MOE2015-T2-1-047) and Tier1 grant (2013-T1-002-232). This work was also supported in part by AFOSR through its Asian Office of Aerospace Research and Development (FA2386-13-1-4112).

Author information

Authors and Affiliations

Authors

Contributions

S.T.H. and Q.X. conceived the idea; S.T.H., C.S., J.Z., and Q.X. designed the experiments; S.T.H. and C.S. performed the experiments; S.T.H., C.S., J.Z., and Q.X. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Qihua Xiong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, ST., Shen, C., Zhang, J. et al. Laser cooling of organic–inorganic lead halide perovskites. Nature Photon 10, 115–121 (2016). https://doi.org/10.1038/nphoton.2015.243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing