Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current

Abstract

Layered two-dimensional materials have demonstrated novel optoelectronic properties and are well suited for integration in planar photonic circuits. Graphene, for example, has been utilized for wideband photodetection. However, because graphene lacks a bandgap, graphene photodetectors suffer from very high dark current. In contrast, layered black phosphorous, the latest addition to the family of two-dimensional materials, is ideal for photodetector applications due to its narrow but finite bandgap. Here, we demonstrate a gated multilayer black phosphorus photodetector integrated on a silicon photonic waveguide operating in the near-infrared telecom band. In a significant advantage over graphene devices, black phosphorus photodetectors can operate under bias with very low dark current and attain an intrinsic responsivity up to 135 mA W−1 and 657 mA W−1 in 11.5-nm- and 100-nm-thick devices, respectively, at room temperature. The photocurrent is dominated by the photovoltaic effect with a high response bandwidth exceeding 3 GHz.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: BP photodetector integrated in a silicon photonic circuit.
Figure 2: Field-effect characteristics of the BP photodetector.
Figure 3: Gate- and bias-tuned photoresponse of the BP photodetector.
Figure 4: Broadband frequency response of the BP photodetector.

References

  1. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nature Photon. 8, 899–907 (2014).

    ADS  Article  Google Scholar 

  2. Avouris, P. Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010).

    ADS  Article  Google Scholar 

  3. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    ADS  Article  Google Scholar 

  4. Xia, F., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    ADS  Article  Google Scholar 

  5. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

    Article  Google Scholar 

  6. Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photon. 7, 892–896 (2013).

    ADS  Article  Google Scholar 

  7. Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photon. 7, 883–887 (2013).

    ADS  Article  Google Scholar 

  8. Freitag, M., Low, T., Xia, F. N. & Avouris, P. Photoconductivity of biased graphene. Nature Photon. 7, 53–59 (2013).

    ADS  Article  Google Scholar 

  9. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    ADS  Article  Google Scholar 

  10. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    ADS  Article  Google Scholar 

  11. Ellis, J. K., Lucero, M. J. & Scuseria, G. E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 99, 261908 (2011).

    ADS  Article  Google Scholar 

  12. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nature Nanotech. 8, 497–501 (2013).

    ADS  Article  Google Scholar 

  13. Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372–377 (2014).

    ADS  Article  Google Scholar 

  14. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  Google Scholar 

  15. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Commun. 5, 4458 (2014).

    ADS  Article  Google Scholar 

  16. Das, S. et al. Tunable transport gap in phosphorene. Nano Lett. 14, 5733–5739 (2014).

    ADS  Article  Google Scholar 

  17. Takao, Y., Asahina, H. & Morita, A. Electronic structure of black phosphorus in tight binding approach. J. Phys. Soc. Jpn 50, 3362–3369 (1981).

    ADS  Article  Google Scholar 

  18. Buscema, M., Groenendijk, D. J., Steele, G. A., van der Zant, H. S. J. & Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nature Commun. 5, 4651 (2014).

    ADS  Article  Google Scholar 

  19. Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

    ADS  Article  Google Scholar 

  20. Engel, M., Steiner, M. & Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14, 6414–6417 (2014).

    ADS  Article  Google Scholar 

  21. Low, T., Engel, M., Steiner, M. & Avouris, P. Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90, 081408 (2014).

    ADS  Article  Google Scholar 

  22. Wang, H. et al. Black phosphorus radio-frequency transistors. Nano Lett. 14, 6424–6429 (2014).

    ADS  Article  Google Scholar 

  23. Li, H., Anugrah, Y., Koester, S. J. & Li, M. Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 101, 111110 (2012).

    ADS  Article  Google Scholar 

  24. Youngblood, N., Anugrah, Y., Ma, R., Koester, S. J. & Li, M. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett. 14, 2741–2746 (2014).

    ADS  Article  Google Scholar 

  25. Gan, X. et al. Controlling the spontaneous emission rate of monolayer MoS in a photonic crystal nanocavity. Appl. Phys. Lett. 103, 181119 (2013).

    ADS  Article  Google Scholar 

  26. Sanfeng, W. et al. Control of two-dimensional excitonic light emission via photonic crystal. 2D Mater. 1, 011001 (2014).

    Article  Google Scholar 

  27. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    ADS  Article  Google Scholar 

  28. Han, L., Neal, A. T., Mengwei, S., Yuchen, D. & Ye, P. D. The effect of dielectric capping on few-layer phosphorene transistors: tuning the Schottky barrier heights. IEEE Electron. Dev. Lett. 35, 795–797 (2014).

    Article  Google Scholar 

  29. Low, T. et al. Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90, 075434 (2014).

    ADS  Article  Google Scholar 

  30. Hong, T. et al. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 6, 8978–8983 (2014).

    ADS  Article  Google Scholar 

  31. Xu, X. D., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    ADS  Article  Google Scholar 

  32. Chi On, C., Okyay, A. K. & Saraswat, K. C. Effective dark current suppression with asymmetric MSM photodetectors in Group IV semiconductors. IEEE Photon. Technol. Lett. 15, 1585–1587 (2003).

    ADS  Article  Google Scholar 

  33. Assefa, S. et al. CMOS-integrated high-speed MSM germanium waveguide photodetector. Opt. Express 18, 4986–4999 (2010).

    ADS  Article  Google Scholar 

  34. Slack, G. A. Thermal conductivity of elements with complex lattices: B, P, S. Phys. Rev. 139, A507–A515 (1965).

    ADS  Article  Google Scholar 

  35. Pernice, W. H. P., Li, M. & Tang, H. X. Gigahertz photothermal effect in silicon waveguides. Appl. Phys. Lett. 93, 213106 (2008).

    ADS  Article  Google Scholar 

  36. Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Preprint at http://arXiv.org/abs/1411.1695 (2014).

  37. Yuan, H. et al. Broadband linear-dichroic photodetector in a black phosphorus vertical p–n junction. Preprint at http://arXiv.org/abs/1409.4729 (2014).

  38. Deng, Y. et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction P–N diode. ACS Nano 8, 8292–8299 (2014).

    Article  Google Scholar 

  39. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    ADS  Article  Google Scholar 

  40. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  41. Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Air Force Office of Scientific Research (award no. FA9550-14-1-0277) and the National Science Foundation (NSF, award no. ECCS-1351002). M.L. thanks X.H. Chen and G.J. Ye of University of Science and Technology of China for providing some of the black phosphorus samples at the initial stage of the project. Parts of this work were carried out in the University of Minnesota Nanofabrication Center, which receives partial support from the NSF through the National Nanotechnolgy Infrastructure Network (NNIN) programme, and the Characterization Facility, which is a member of the NSF-funded Materials Research Facilities Network via the Material Research Science and Engineering Center (MRSEC) programme.

Author information

Authors and Affiliations

Authors

Contributions

M.L. conceived and supervised the research. N.Y. fabricated the devices, performed the measurements and analysed the data. C.C. assisted the fabrication. N.Y., M.L. and S.J.K. analysed the data. M.L., N.Y. and S.J.K. co-wrote the manuscript.

Corresponding author

Correspondence to Mo Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1793 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Youngblood, N., Chen, C., Koester, S. et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photon 9, 247–252 (2015). https://doi.org/10.1038/nphoton.2015.23

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.23

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing