Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extraction of a single photon from an optical pulse

Abstract

Removing a single photon from a pulse is one of the most elementary operations that can be performed on light, having both fundamental significance1,2 and practical applications in quantum communication3,4,5,6,7,8,9 and computation10. So far, photon subtraction, in which the removed photon is detected and therefore irreversibly lost, has been implemented in a probabilistic manner with inherently low success rates using low-reflectivity beam splitters1. Here we demonstrate a scheme for the deterministic extraction of a single photon from an incoming pulse. The removed photon is diverted to a different mode, enabling its use for other purposes, such as a photon number-splitting attack on quantum key distribution protocols11. Our implementation makes use of single-photon Raman interaction (SPRINT)12,13 with a single atom near a nanofibre-coupled microresonator. The single-photon extraction probability in our current realization is limited mostly by linear loss, yet probabilities close to unity should be attainable with realistic experimental parameters13.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic depiction of single-photon Raman interaction (SPRINT).
Figure 2: Experimental results of single-photon extraction.
Figure 3: Nonclassical temporal correlations between the reflected and transmitted pulses.

References

  1. Parigi, V., Zavatta, A., Kim, M. & Bellini, M. Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007).

    Article  ADS  Google Scholar 

  2. Zavatta, A., Parigi, V., Kim, M. & Bellini, M. Subtracting photons from arbitrary light fields: experimental test of coherent state invariance by single-photon annihilation. New J. Phys. 10, 123006 (2008).

    Article  ADS  Google Scholar 

  3. Wenger, J., Tualle-Brouri, R. & Grangier, P. Nongaussian statistics from individual pulses of squeezed light. Phys. Rev. Lett. 92, 153601 (2004).

    Article  ADS  Google Scholar 

  4. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006).

    Article  ADS  Google Scholar 

  5. Neergaard-Nielsen, J. S., Melholt Nielsen, B., Hettich, C., Mølmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006).

    Article  ADS  Google Scholar 

  6. Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R. & Grangier, P. Increasing entanglement between gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502 (2007).

    Article  ADS  Google Scholar 

  7. Ourjoumtsev, A., Ferreyrol, F., Tualle-Brouri, R. & Grangier, P. Preparation of non-local superpositions of quasi-classical light states. Nature Phys. 5, 189–192 (2009).

    Article  ADS  Google Scholar 

  8. Takahashi, H. et al. Entanglement distillation from gaussian input states. Nature Photon. 4, 178–181 10.1038/nphoton.2015.253(2010).

    Article  ADS  Google Scholar 

  9. Opatrný, T., Kurizki, G. & Welsch, D. G. Improvement on teleportation of continuous variables by photon subtraction via conditional measurement. Phys Rev. A 61, 032302 (2000).

    Article  ADS  Google Scholar 

  10. Gilchrist, A. et al. Schrödinger cats and their power for quantum information processing. J. Opt. B 6, S828 (2004).

    Article  Google Scholar 

  11. Brassard, G., Lütkenhaus, N., Mor, T. & Sanders, B. C. Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000).

    Article  ADS  Google Scholar 

  12. Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014).

    Article  ADS  Google Scholar 

  13. Rosenblum, S. & Dayan, B. Analysis of photonic quantum nodes based on single-photon Raman interaction. Preprint at http://arxiv.org/abs/1412.0604 (2014).

  14. Fiurášek, J., García-Patrón, R. & Cerf, N. J. Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions. Phys. Rev. A 72, 033822 (2005).

    Article  ADS  Google Scholar 

  15. Honer, J., Löw, R., Weimer, H., Pfau, T. & Büchler, H. P. Artificial atoms can do more than atoms: Deterministic single photon subtraction from arbitrary light fields. Phys. Rev. Lett. 107, 093601 (2011).

    Article  ADS  Google Scholar 

  16. Calsamiglia, J., Barnett, S. M., Lütkenhaus, N. & Suominen, K.-A. Removal of a single photon by adaptive absorption. Phys. Rev. A 64, 043814 (2001).

    Article  ADS  Google Scholar 

  17. Rosenblum, S., Parkins, S. & Dayan, B. Photon routing in cavity QED: beyond the fundamental limit of photon blockade. Phys. Rev. A 84, 033854 (2011).

    Article  ADS  Google Scholar 

  18. Gea-Banacloche, J. & Wilson, W. Photon subtraction and addition by a three-level atom in an optical cavity. Phys. Rev. A 88, 033832 (2013).

    Article  ADS  Google Scholar 

  19. Oi, D. K., Potoček, V. & Jeffers, J. Nondemolition measurement of the vacuum state or its complement. Phys. Rev. Lett. 110, 210504 (2013).

    Article  ADS  Google Scholar 

  20. Pinotsi, D. & Imamoglu, A. Single photon absorption by a single quantum emitter. Phys. Rev. Lett. 100, 093603 (2008).

    Article  ADS  Google Scholar 

  21. Lin, G. W., Zou, X. B., Lin, X. M. & Guo, G. C. Heralded quantum memory for single-photon polarization qubits. Europhys. Lett. 86, 3006 (2009).

    Google Scholar 

  22. Koshino, K., Ishizaka, S. & Nakamura, Y. Deterministic photon-photon √SWAP gate using a Λ system. Phys. Rev. A 82, 010301 (2010).

    Article  ADS  Google Scholar 

  23. Gorshkov, A. V., Nath, R. & Pohl, T. Dissipative many-body quantum optics in Rydberg media. Phys. Rev. Lett. 110, 153601 (2013).

    Article  ADS  Google Scholar 

  24. Bennett, C. H. & Brassard, G. Quantum cryptography: Public-key distribution and coin tossing. Proc. IEEE Int. Conf. Computers, Systems, and Signal Processing 175–179 (1984).

  25. Gorshkov, A. V., Otterbach, J., Demler, E., Fleischhauer, M. & Lukin, M. D. Photonic phase gate via an exchange of fermionic spin waves in a spin chain. Phys. Rev. Lett. 105, 060502 (2010).

    Article  ADS  Google Scholar 

  26. Shen, Y., Bradford, M. & Shen, J. T. Single-photon diode by exploiting the photon polarization in a waveguide. Phys. Rev. Lett. 107, 173902 (2011).

    Article  ADS  Google Scholar 

  27. Junge, C., O'Shea, D., Volz, J. & Rauschenbeutel, A. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110, 213604 (2013).

    Article  ADS  Google Scholar 

  28. Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67–71 (2014).

    Article  ADS  Google Scholar 

  29. Inomata, K. et al. Microwave down-conversion with an impedance-matched Λ-system in driven circuit QED. Phys. Rev. Lett. 113, 063604 (2014).

    Article  ADS  Google Scholar 

  30. Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Preprint at http://arxiv.org/abs/1412.2889 (2014).

Download references

Acknowledgements

Support from the Israeli Science Foundation, the Joseph and Celia Reskin Career Development Chair in Physics, and the Crown Photonics Center is acknowledged. This research was made possible in part by the historic generosity of the Harold Perlman family.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design, construction and carrying out of the experiment, discussed the results and commented on the manuscript. S.R., O.B. and I.S. analysed the data and performed the simulations. S.R., O.B. and B.D. wrote the manuscript. S.R. and O.B. contributed equally to this work.

Corresponding author

Correspondence to Barak Dayan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosenblum, S., Bechler, O., Shomroni, I. et al. Extraction of a single photon from an optical pulse. Nature Photon 10, 19–22 (2016). https://doi.org/10.1038/nphoton.2015.227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing