Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals

Abstract

Optical upconversion via sensitized triplet–triplet exciton annihilation converts incoherent low-energy photons to shorter wavelengths under modest excitation intensities1,2,3. Here, we report a solid-state thin film for infrared-to-visible upconversion that employs lead sulphide colloidal nanocrystals as a sensitizer. Upconversion is achieved from pump wavelengths beyond λ = 1 μm to emission at λ = 612 nm. When excited at λ = 808 nm, two excitons in the sensitizer are converted to one higher-energy state in the emitter at a yield of 1.2 ± 0.2%. Peak efficiency is attained at an absorbed intensity equivalent to less than one sun. We demonstrate that colloidal nanocrystals are an attractive alternative to existing molecular sensitizers, given their small exchange splitting, wide wavelength tunability, broadband infrared absorption, and our transient observations of efficient energy transfer. This solid-state architecture for upconversion may prove useful for enhancing the capabilities of solar cells and photodetectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of nanocrystal-sensitized upconversion via triplet-triplet annihilation.
Figure 2: Absorption, photoluminescence and excitation spectra of infrared upconverter devices.
Figure 3: Nanocrystal-sensitized upconverters reach peak efficiency at a sub-solar absorbed power density.
Figure 4: Photoluminescence dynamics show slow, yet efficient triplet transfer.

Similar content being viewed by others

References

  1. Singh-Rachford, T. N. & Castellano, F. N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010).

    Article  Google Scholar 

  2. Schmidt, T. W. & Castellano, F. N. Photochemical upconversion: the primacy of kinetics. J. Phys. Chem. Lett. 5, 4062–4072 (2014).

    Article  Google Scholar 

  3. Schulze, T. F. & Schmidt, T. W. Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 8, 103–125 (2015).

    Article  Google Scholar 

  4. Zhou, J., Liu, Q., Feng, W., Sun, Y. & Li, F. Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015).

    Article  Google Scholar 

  5. Trupke, T., Green, M. A. & Würfel, P. Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92, 4117–4122 (2002).

    Article  ADS  Google Scholar 

  6. de Wild, J., Meijerink, A., Rath, J. K., van Sark, W. G. J. H. M. & Schropp, R. E. I. Upconverter solar cells: materials and applications. Energy Environ. Sci. 4, 4835 (2011).

    Article  Google Scholar 

  7. Monguzzi, A. et al. Broadband up-conversion at subsolar irradiance: triplet-triplet annihilation boosted by fluorescent semiconductor nanocrystals. Nano Lett. 14, 6644–6650 (2014).

    Article  ADS  Google Scholar 

  8. Cao, X., Hu, B. & Zhang, P. High upconversion efficiency from hetero triplet–triplet annihilation in multiacceptor systems. J. Phys. Chem. Lett. 4, 2334–2338 (2013).

    Article  Google Scholar 

  9. Fückel, B. et al. Singlet oxygen mediated photochemical upconversion of NIR light. J. Phys. Chem. Lett. 2, 966–971 (2011).

    Article  Google Scholar 

  10. Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 145–164 (1970).

    Article  ADS  Google Scholar 

  11. Singh-Rachford, T. N., Lott, J., Weder, C. & Castellano, F. N. Influence of temperature on low-power upconversion in rubbery polymer blends. J. Am. Chem. Soc. 131, 12007–12014 (2009).

    Article  Google Scholar 

  12. Monguzzi, A., Tubino, R. & Meinardi, F. Multicomponent polymeric film for red to green low power sensitized up-conversion. J. Phys. Chem. A 113, 1171–1174 (2009).

    Article  Google Scholar 

  13. Keivanidis, P. E., Baluschev, S., Lieser, G. & Wegner, G. Inherent photon energy recycling effects in the up-converted delayed luminescence dynamics of poly(fluorene)-PtIIoctaethyl porphyrin blends. ChemPhysChem 10, 2316–2326 (2009).

    Article  Google Scholar 

  14. Mahato, P., Monguzzi, A., Yanai, N., Yamada, T. & Kimizuka, N. Fast and long-range triplet exciton diffusion in metal–organic frameworks for photon upconversion at ultralow excitation power. Nature Mater. 14, 924–930 (2015).

    Article  ADS  Google Scholar 

  15. Moreels, I. et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3, 3023–3030 (2009).

    Article  Google Scholar 

  16. Weidman, M. C., Beck, M. E., Hoffman, R. S., Prins, F. & Tisdale, W. A. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 8, 6363–6371 (2014).

    Article  Google Scholar 

  17. Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    Article  ADS  Google Scholar 

  18. Huang, Z. et al. Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15, 5552–5557 (2015).

    Article  ADS  Google Scholar 

  19. Thompson, N. J. et al. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nature Mater. 13, 1039–1043 (2014).

    Article  ADS  Google Scholar 

  20. Tabachnyk, M. et al. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nature Mater. 13, 1033–1038 (2014).

    Article  ADS  Google Scholar 

  21. Debad, J. D., Morris, J. C., Lynch, V., Magnus, P. & Bard, A. J. Dibenzotetraphenylperiflanthene: synthesis, photophysical properties, and electrogenerated chemiluminescence. J. Am. Chem. Soc. 118, 2374–2379 (1996).

    Article  Google Scholar 

  22. Kondakov, D. Y., Pawlik, T. D., Hatwar, T. K. & Spindler, J. P. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes. J. Appl. Phys. 106, 124510 (2009).

    Article  ADS  Google Scholar 

  23. de Mello, J. C., Wittmannn, H. F. & Friend, R. H. an improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230 (1997).

    Article  Google Scholar 

  24. Haefele, A., Blumhoff, J., Khnayzer, R. S. & Castellano, F. N. Getting to the (square) root of the problem: how to make noncoherent pumped upconversion linear. J. Phys. Chem. Lett. 3, 299–303 (2012).

    Article  Google Scholar 

  25. Cui, J., Beyler, A. P., Bischof, T. S., Wilson, M. W. B. & Bawendi, M. G. Deconstructing the photon stream from single nanocrystals: From binning to correlation. Chem. Soc. Rev. 43, 1287–1310 (2013).

    Article  Google Scholar 

  26. Whitcomb, K. J., Ryan, D. P., Gelfand, M. P. & Van Orden, A. Blinking statistics of small clusters of semiconductor nanocrystals. J. Phys. Chem. C 117, 25761–25768 (2013).

    Article  Google Scholar 

  27. Reineke, S. & Baldo, M. A. Room temperature triplet state spectroscopy of organic semiconductors. Sci. Rep. 4, 3797 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001088 (MIT). The authors thank P. Deotare for assistance with optical measurements, as well as J. M. Scherer, C-H. Chuang, P. R. Brown and M. Sponseller for assistance with nanocrystal synthesis.

Author information

Authors and Affiliations

Authors

Contributions

M.Wu and D.N.C. fabricated the samples. M.Wu measured absorption spectra and the intensity dependence. D.N.C. measured excitation spectra and the yield of upconversion. M.W.B.W. made the transient PL measurements and synthesized the nanocrystals. M.Wu and J.J. prepared nanocrystal solutions for sample fabrication and performed AFM measurements. N.G. and M.Welborn simulated the nanocrystal structure. The project was conceived by M.A.B. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Vladimir Bulović, Moungi G. Bawendi or Marc A. Baldo.

Ethics declarations

Competing interests

MIT has filed an application for patent based on this technology that names D.N.C., M.Wu, M.W.B.W., V.B., M.G.B., and M.A.B. as inventors.

Supplementary information

Supplementary information

Supplementary information (PDF 2245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Congreve, D., Wilson, M. et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nature Photon 10, 31–34 (2016). https://doi.org/10.1038/nphoton.2015.226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing