Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of a hot-phonon bottleneck in lead-iodide perovskites

Abstract

We study the carrier dynamics in planar methyl ammonium lead iodide perovskite films using broadband transient absorption spectroscopy. We show that the sharp optical absorption onset is due to an exciton transition that is inhomogeneously broadened with a binding energy of 9 meV. We fully characterize the transient absorption spectrum by free-carrier-induced bleaching of the exciton transition, quasi-Fermi energy, carrier temperature and bandgap renormalization constant. The photo-induced carrier temperature is extracted from the transient absorption spectra and monitored as a function of delay time for different excitation wavelengths and photon fluences. We find an efficient hot-phonon bottleneck that slows down cooling of hot carriers by three to four orders of magnitude in time above a critical injection carrier density of 5 × 1017 cm−3. Compared with molecular beam epitaxially grown GaAs, the critical density is an order of magnitude lower and the relaxation time is approximately three orders of magnitude longer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Spectral analysis.
Figure 2: Illustration of the model used to interpret the TA spectra.
Figure 3: Hot carrier thermalization.
Figure 4: Carrier cooling curves for methylammonium (MA) and formamidinium (FA) lead halide perovskite films.
Figure 5: Time constant characterizing carrier thermalization rate due to phonon emission as a function of carrier temperature.

References

  1. 1

    Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).

    ADS  Article  Google Scholar 

  2. 2

    Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  3. 3

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    ADS  Article  Google Scholar 

  4. 4

    Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    ADS  Article  Google Scholar 

  5. 5

    Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photon. 8, 133–138 (2014).

    ADS  Article  Google Scholar 

  6. 6

    Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    ADS  Article  Google Scholar 

  7. 7

    Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotech. 9, 687–692 (2014).

    ADS  Article  Google Scholar 

  8. 8

    Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photon. 9, 679–686 (2015).

    ADS  Article  Google Scholar 

  9. 9

    Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Mater. 14, 636–642 (2015).

    ADS  Article  Google Scholar 

  10. 10

    Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Mater. 13, 476–480 (2014).

    ADS  Article  Google Scholar 

  11. 11

    Manser, J. S. & Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nature Photon. 8, 737–743 (2014).

    ADS  Article  Google Scholar 

  12. 12

    Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    ADS  Article  Google Scholar 

  13. 13

    Elliott, R. J. Intensity of optical absorption by excitons. Phys. Rev. 108, 1384–1389 (1957).

    ADS  Article  Google Scholar 

  14. 14

    Sturge, M. D. Optical absorption of gallium arsenide between 0.6 and 2.75 eV. Phys. Rev. 127, 768–773 (1962).

    ADS  Article  Google Scholar 

  15. 15

    Wiesenfeld, J. M. & Taylor, A. J. Picosecond band filling in highly excited In-Ga-As-P films. Phys. Rev. B 34, 8740–8749 (1986).

    ADS  Article  Google Scholar 

  16. 16

    Puthussery, J., Lan, A., Kosel, T. H. & Kuno, M. Band-filling of solution-synthesized CdS nanowires. ACS Nano 2, 357–367 (2008).

    Article  Google Scholar 

  17. 17

    Huang, D., Chyi, J.-I. & Morkoç, H. Carrier effects on the excitonic absorption in GaAs quantum-well structures: phase-space filling. Phys. Rev. B 42, 5147–5153 (1990).

    ADS  Article  Google Scholar 

  18. 18

    Calcagnile, L. et al. Free-carrier effects on the excitonic absorption of n-type modulation-doped Zn1–xCdxSe/ZnSe multiple quantum wells. Phys. Rev. B 52, 17248–17253 (1995).

    ADS  Article  Google Scholar 

  19. 19

    Lee, Y. H. et al. Room-temperature optical nonlinearities in GaAs. Phys. Rev. Lett. 57, 2446–2449 (1986).

    ADS  Article  Google Scholar 

  20. 20

    Shah, J., Leheny, R. F. & Lin, C. Dynamic Burstein shift in GaAs. Solid State Commun. 18, 1035–1037 (1976).

    ADS  Article  Google Scholar 

  21. 21

    Yin, W.-J., Shi, T. & Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014).

    Article  Google Scholar 

  22. 22

    Amat, A. et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014).

    ADS  Article  Google Scholar 

  23. 23

    Giorgi, G., Fujisawa, J.-I., Segawa, H. & Yamashita, K. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013).

    Article  Google Scholar 

  24. 24

    Chemla, D. S., Miller, D. A. B., Smith, P. W., Gossard, A. C. & Wiegmann, W. Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures. IEEE J. Quantum Electron. 20, 265–275 (1984).

    ADS  Article  Google Scholar 

  25. 25

    Brinkman, W. F. & Rice, T. M. Electron–hole liquids in semiconductors. Phys. Rev. B 7, 1508–1523 (1973).

    ADS  Article  Google Scholar 

  26. 26

    Binet, F., Duboz, J. Y., Off, J. & Scholz, F. High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition. Phys. Rev. B 60, 4715–4722 (1999).

    ADS  Article  Google Scholar 

  27. 27

    Tanaka, S., Kobayashi, H., Saito, H. & Shionoya, S. Luminescence of high density electron–hole plasma in GaAs. J. Phys. Soc. Jpn 49, 1051–1059 (1980).

    ADS  Article  Google Scholar 

  28. 28

    Ryan, J. F. et al. Time-resolved photoluminescence of two-dimensional hot carriers in GaAs–AlGaAs heterostructures. Phys. Rev. Lett. 53, 1841–1844 (1984).

    ADS  Article  Google Scholar 

  29. 29

    Von der Linde, D. & Lambrich, R. Direct measurement of hot-electron relaxation by picosecond spectroscopy. Phys. Rev. Lett. 42, 1090–1093 (1979).

    ADS  Article  Google Scholar 

  30. 30

    Leheny, R. F., Shah, J., Fork, R. L., Shank, C. V. & Migus, A. Dynamics of hot carrier cooling in photo-excited GaAs. Solid State Commun. 31, 809–813 (1979).

    ADS  Article  Google Scholar 

  31. 31

    Kash, K. & Shah, J. Carrier energy relaxation in In0.53Ga0.47As determined from picosecond luminescence studies. Appl. Phys. Lett. 45, 401–403 (1984).

    ADS  Article  Google Scholar 

  32. 32

    Zanato, D., Balkan, N., Ridley, B. K., Hill, G. & Schaff, W. J. Hot electron cooling rates via the emission of LO-phonons in InN. Semicond. Sci. Technol. 19, 1024–1028 (2004).

    ADS  Article  Google Scholar 

  33. 33

    Huang, L.-y. & Lambrecht, W. R. L. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3 . Phys. Rev. B 88, 165203 (2013).

    ADS  Article  Google Scholar 

  34. 34

    Rosenwaks, Y. et al. Hot-carrier cooling in GaAs: quantum wells versus bulk. Phys. Rev. B 48, 14675–14678 (1993).

    ADS  Article  Google Scholar 

  35. 35

    Pelouch, W. S. et al. Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities. Phys. Rev. B 45, 1450–1453 (1992).

    ADS  Article  Google Scholar 

  36. 36

    Shah, J. Hot electrons and phonons under high intensity photoexcitation of semiconductors. Solid-State Electron. 21, 43–50 (1978).

    ADS  Article  Google Scholar 

  37. 37

    Yoffa, E. J. Screening of hot-carrier relaxation in highly photoexcited semiconductors. Phys. Rev. B 23, 1909–1919 (1981).

    ADS  Article  Google Scholar 

  38. 38

    Pötz, W. Hot-phonon effects in bulk GaAs. Phys. Rev. B 36, 5016–5019 (1987).

    ADS  Article  Google Scholar 

  39. 39

    Joshi, R. P. & Ferry, D. K. Hot-phonon effects and interband relaxation processes in photoexcited GaAs quantum wells. Phys. Rev. B 39, 1180–1187 (1989).

    ADS  Article  Google Scholar 

  40. 40

    Rühle, W. W., Leo, K. & Bauser, E. Cooling of a hot electron–hole plasma in AlxGa1–xAs. Phys. Rev. B 40, 1756–1761 (1989).

    ADS  Article  Google Scholar 

  41. 41

    Conibeer, G., Guillemoles, J., Yu, F. & Levard, H. in Advanced Concepts in Photovoltaics (eds Nozik, A. J., Conibeer, G. & Beard, M. C.) Ch. 12, 379–424 (Royal Society of Chemistry, 2014).

    Book  Google Scholar 

  42. 42

    Kuo, S.-Y., Li, C.-T. & Hsieh, W.-F. Decreasing giant splitting of longitudinal and transverse optical phonons in PbxSr1−xTiO3 due to Pb covalency. Appl. Phys. Lett. 81, 3019–3021 (2002).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank A.J. Nozik for discussions. This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through the Solar Photochemistry programme contract no. DE-AC36-08GO28308 to the National Renewable Energy Laboratory, Golden, CO. J.M.L. was supported by the US Department of Energy/National Renewable Energy Laboratory's Laboratory Directed Research and Development (LDRD) programme. The authors thank S. Saha for preparing some of the perovskite films. The publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid up, irrevocable, worldwide licence to publish or reproduce the published form of this work, or allow others to do so, for US Government purposes.

Author information

Affiliations

Authors

Contributions

Y.Y. and M.C.B. conceived the experiments. Y.Y. carried out the transient absorption measurements. D.P.O. and K.Z. prepared the perovskite samples. R.M.F. prepared the GaAs samples. J.M.L. performed XRD measurements. Y.Y. and M.C.B. analysed the data. Y.Y., M.C.B. and J.v.d.L. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Matthew C. Beard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2910 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ostrowski, D., France, R. et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nature Photon 10, 53–59 (2016). https://doi.org/10.1038/nphoton.2015.213

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing