Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage

Abstract

Enhanced optical absorption of molecules in the vicinity of metallic nanostructures is key to a number of surface-enhanced spectroscopies and of great general interest to the fields of plasmonics and nano-optics. However, experimental access to this absorbance has long proven elusive. Here, we present direct measurements of the surface absorbance of dye molecules adsorbed onto silver nanospheres and, crucially, at sub-monolayer concentrations where dye–dye interactions become negligible. With a large detuning from the plasmon resonance, distinct shifts and broadening of the molecular resonances reveal the intrinsic properties of the dye in contact with the metal colloid, in contrast to the often studied strong-coupling regime where the optical properties of the dye molecules cannot be isolated. The observation of these shifts together with the ability to routinely measure them has broad implications in the interpretation of experiments involving resonant molecules on metallic surfaces, such as surface-enhanced spectroscopies and many aspects of molecular plasmonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mie theory simulations of dye-coated spheres.
Figure 2: Differential absorbance measurements.
Figure 3: Differential absorbance spectra of common dyes adsorbed on silver nanoparticles.

Similar content being viewed by others

References

  1. Grzelczak, M., Perez-Juste, J., Mulvaney, P. & Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783–1791 (2008).

    Article  Google Scholar 

  2. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  ADS  Google Scholar 

  3. Hess, O. et al. Active nanoplasmonic metamaterials. Nature Mater. 11, 573–584 (2012).

    Article  ADS  Google Scholar 

  4. Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  ADS  Google Scholar 

  5. Le Ru, E. C. et al. Mechanisms of spectral profile modification in surface-enhanced fluorescence. J. Phys. Chem. C 111, 16076–16079 (2007).

    Article  Google Scholar 

  6. Le Ru, E. C. & Etchegoin, P. G. Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2009).

    Google Scholar 

  7. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

    Article  ADS  Google Scholar 

  8. Aroca, R. Surface-Enhanced Vibrational Spectroscopy (Wiley, 2006).

    Book  Google Scholar 

  9. Barhoumi, A., Zhang, D., Tamand, F. & Halas, N. J. Surface-enhanced Raman spectroscopy of DNA. J. Am. Chem. Soc. 130, 5523–5529 (2008).

    Article  Google Scholar 

  10. Le Ru, E. C. et al. A scheme for detecting every single target molecule with surface-enhanced Raman spectroscopy. Nano Lett. 11, 5013–5019 (2011).

    Article  ADS  Google Scholar 

  11. Brolo, A. G. Plasmonics for future biosensors. Nature Photon. 6, 709–713 (2012).

    Article  ADS  Google Scholar 

  12. Govorov, A. O., Fan, Z., Hernandez, P., Slocik, J. M. & Naik, R. R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 10, 1374–1382 (2010).

    Article  ADS  Google Scholar 

  13. Xu, S., Shan, J., Shi, W., Liu, L. & Xu, L. Modifying photoisomerization efficiency by metallic nanostructures. Opt. Express 19, 12336–12341 (2011).

    Article  ADS  Google Scholar 

  14. Kleinman, S. L., Frontiera, R. R., Henry, A.-I., Dieringer, J. A. & Van Duyne, R. P. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21–36 (2013).

    Article  Google Scholar 

  15. Galloway, C. M., Artur, C., Grand, J. & Le Ru, E. C. Photobleaching of fluorophores on the surface of nanoantennas. J. Phys. Chem. C 118, 28820–28830 (2014).

    Article  Google Scholar 

  16. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).

    Article  ADS  Google Scholar 

  17. Lozano, G. et al. Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources. Light Sci. Appl. 2, e66 (2013).

    Article  Google Scholar 

  18. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  ADS  Google Scholar 

  19. Mubeen, S. et al. On the plasmonic photovoltaic. ACS Nano 8, 6066–6073 (2014).

    Article  Google Scholar 

  20. Sheldon, M. T., van de Groep, J., Brown, A. M., Polman, A. & Atwater, H. A. Plasmoelectric potentials in metal nanostructures. Science 346, 828–831 (2014).

    Article  ADS  Google Scholar 

  21. Craighead, H. G. & Glass, A. Optical absorption of small metal particles with adsorbed dye coats. Opt. Lett. 6, 248–250 (1981).

    Article  ADS  Google Scholar 

  22. Wiederrecht, G. P., Wurtz, G. A. & Hranisavljevic, J. Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles. Nano Lett. 4, 2121–2125 (2004).

    Article  ADS  Google Scholar 

  23. Haes, A. J., Zou, S., Zhao, J., Schatz, G. C. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy near molecular resonances. J. Am. Chem. Soc. 128, 10905–10914 (2006).

    Article  Google Scholar 

  24. Zhao, J. et al. Interaction of plasmon and molecular resonances for Rhodamine 6G adsorbed on silver nanoparticles. J. Am. Chem. Soc. 129, 7647–7656 (2007).

    Article  Google Scholar 

  25. Fofang, N. T. et al. Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell–J-aggregate complexes. Nano Lett. 8, 3481–3487 (2008).

    Article  ADS  Google Scholar 

  26. Ni, W. et al. Effects of dyes, gold nanocrystals, pH, and metal ions on plasmonic and molecular resonance coupling. J. Am. Chem. Soc. 132, 4806–4814 (2010).

    Article  Google Scholar 

  27. Ni, W., Ambjörnsson, T., Apell, S. P., Chen, H. & Wang, J. Observing plasmonic–molecular resonance coupling on single gold nanorods. Nano Lett. 10, 77–84 (2010).

    Article  ADS  Google Scholar 

  28. Davis, T. J., Gómez, D. E. & Vernon, K. C. Interaction of molecules with localized surface plasmons in metallic nanoparticles. Phys. Rev. B 81, 045432 (2010).

    Article  ADS  Google Scholar 

  29. Valmorra, F. et al. Strong coupling between surface plasmon polariton and laser dye Rhodamine 800. Appl. Phys. Lett. 99, 051110 (2011).

    Article  ADS  Google Scholar 

  30. Chen, H., Shao, L., Woo, K. C., Wang, J. & Lin, H.-Q. Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer. J. Phys. Chem. C 116, 14088–14095 (2012).

    Article  Google Scholar 

  31. Zengin, G. et al. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Sci. Rep. 3, 3074 (2013).

    Article  Google Scholar 

  32. Fang, Y., Blinn, K., Li, X., Weng, G. & Liu, M. Strong coupling between Rhodamine 6G and localized surface plasmon resonance of immobile Ag nanoclusters fabricated by direct current sputtering. Appl. Phys. Lett. 102, 143112 (2013).

    Article  ADS  Google Scholar 

  33. Schlather, A. E., Large, N., Urban, A. S., Nordlander, P. & Halas, N. J. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett. 13, 3281–3286 (2013).

    Article  ADS  Google Scholar 

  34. Faucheaux, J. A., Fu, J. & Jain, P. K. Unified theoretical framework for realizing diverse regimes of strong coupling between plasmons and electronic transitions. J. Phys. Chem. C 118, 2710–2717 (2014).

    Article  Google Scholar 

  35. Antosiewicz, T. J., Apell, S. P. & Shegai, T. Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling. ACS Photon. 1, 454–463 (2014).

    Article  Google Scholar 

  36. Cacciola, A., Di Stefano, O., Stassi, R., Saija, R. & Savasta, S. Ultrastrong coupling of plasmons and excitons in a nanoshell. ACS Nano 8, 11483–11492 (2014).

    Article  Google Scholar 

  37. Kasha, M. Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat. Res. 20, 55–70 (1963).

    Article  ADS  Google Scholar 

  38. Nelson, N. B. & Prézelin, B. B. Calibration of an integrating sphere for determining the absorption coefficient of scattering suspensions. Appl. Opt. 32, 6710–6717 (1993).

    Article  ADS  Google Scholar 

  39. Babin, M. & Stramski, D. Light absorption by aquatic particles in the near-IR spectral region. Limnol. Oceanogr. 47, 911–915 (2002).

    Article  ADS  Google Scholar 

  40. Gaigalas, A. K., He, H.-J. & Wang, L. Measurement of absorption and scattering with an integrating sphere detector: application to microalgae. J. Res. Natl Inst. Stand. Technol. 114, 69–81 (2009).

    Article  Google Scholar 

  41. Le Ru, E. C. et al. Experimental demonstration of surface selection rules for SERS on flat metallic surfaces. Chem. Commun. 47, 3903–3905 (2011).

    Article  Google Scholar 

  42. Dignam, M. J. & Moskovits, M. Optical properties of sub-monolayer molecular films. J. Chem. Soc. Faraday Trans. II 69, 56–64 (1973).

    Article  Google Scholar 

  43. Angeloni, L., Smulevich, G. & Marzocchi, M. Resonance Raman spectrum of Crystal Violet. J. Raman Spectrosc. 8, 305–310 (1979).

    Article  ADS  Google Scholar 

  44. Morton, S. M. & Jensen, L. A discrete interaction model/quantum mechanical method for describing response properties of molecules adsorbed on metal nanoparticles. J. Chem. Phys. 133, 074103 (2010).

    Article  ADS  Google Scholar 

  45. Forker, R., Gruenewald, M. & Fritz, T. Optical differential reflectance spectroscopy on thin molecular films. Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 108, 34–68 (2012).

    Article  Google Scholar 

  46. Dietze, D. R. & Mathies, R. A. Molecular orientation and optical properties of 3,3′-diethylthiatricarbocyanine iodide adsorbed to gold surfaces: consequences for surface-enhanced resonance Raman spectroscopy. J. Phys. Chem. C 119, 9980–9987 (2015).

    Article  Google Scholar 

  47. Le Ru, E. C. & Etchegoin, P. G. Quantifying SERS enhancements. MRS Bull. 38, 631–640 (2013).

    Article  Google Scholar 

  48. Moskovits, M. Persistent misconceptions regarding SERS. Phys. Chem. Chem. Phys. 15, 5301–5311 (2013).

    Article  Google Scholar 

  49. Darby, B. L. & Le Ru, E. C. Competition between molecular adsorption and diffusion: dramatic consequences for SERS in colloidal solutions. J. Am. Chem. Soc. 136, 10965–10973 (2014).

    Article  Google Scholar 

  50. Le Ru, E. C. & Etchegoin, P. G. SERS and plasmonics codes (SPlaC); http://www.vuw.ac.nz/raman/book/codes.aspx

Download references

Acknowledgements

E.C.L.R. acknowledges the Royal Society of New Zealand (RSNZ) for support via a Rutherford Discovery Fellowship. The authors thank A. Edgar, P. Northcote and M. Lein from Victoria University of Wellington for discussions.

Author information

Authors and Affiliations

Authors

Contributions

B.L.D. and E.C.L.R. designed the original ideas presented in this work and built the experimental set-up with A.E.P. B.L.D. carried out most of the experiments. M.M. optimized various aspects of the experimental set-up, carried out extensive calibration, and performed the DFT calculations. B.A., B.L.D. and E.C.L.R. developed and performed the electromagnetic theory and calculations. The manuscript was jointly written by B.L.D., B.A. and E.C.L.R. All authors discussed the results and the manuscript.

Corresponding author

Correspondence to Eric C. Le Ru.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darby, B., Auguié, B., Meyer, M. et al. Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage. Nature Photon 10, 40–45 (2016). https://doi.org/10.1038/nphoton.2015.205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing