Dynamic consequences of optical spin–orbit interaction


Field symmetries and conservation laws are closely associated through Noether's theorem. Light field inhomogeneities lead to changes in linear and angular momenta and, consequently, to radiation pressure1,2, spin or rotation of objects3,4. Here we discuss a new type of mechanical action originating in the exchange between spin and orbital angular momenta. We demonstrate theoretically and experimentally that, when mirror and central symmetries of scattering are broken, a force appears acting perpendicularly to the direction of propagation. This new force completes the set of non-conservative forces (radiation pressure and tractor beams) that can be generated with unstructured light beams.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Scattering of circularly polarized light off a spherical particle located at an interface between two dielectric media.
Figure 2: Lateral force on Mie-size particles.
Figure 3: Experimental data.


  1. 1

    Lebedev, P. Untersuchungen über die druckkräfte des lichtes. Ann. Phys. (Leipz.) 6, 433–458 (1901).

    ADS  Article  Google Scholar 

  2. 2

    Nichols, E. F. & Hull, G. F. A preliminary communication on the pressure of heat and light radiation. Phys. Rev. 13, 307–320 (1901).

    ADS  Google Scholar 

  3. 3

    Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

    ADS  Article  Google Scholar 

  4. 4

    Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998).

    ADS  Article  Google Scholar 

  5. 5

    Liberman, V. S. & Zel'dovich, B. Y. Spin–orbit interaction of a photon in an inhomogeneous medium. Phys. Rev. A 46, 5199–5207 (1992).

    ADS  Article  Google Scholar 

  6. 6

    Onada, M., Murakami, S. & Nagaose, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).

    ADS  Article  Google Scholar 

  7. 7

    Schwartz, C. & Dogariu, A. Conservation of angular momentum of light in single scattering. Opt. Express 14, 8425–8433 (2006).

    ADS  Article  Google Scholar 

  8. 8

    Haefner, D., Sukhov, S. & Dogariu, A. Spin Hall effect of light in spherical geometry. Phys. Rev. Lett. 102, 123903 (2009).

    ADS  Article  Google Scholar 

  9. 9

    Rodríguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013).

    ADS  Article  Google Scholar 

  10. 10

    Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin–orbit interaction of light. Science 346, 67–71 (2014).

    ADS  Article  Google Scholar 

  11. 11

    Fedoseyev, V. G. Transverse forces related to the transverse shifts of reflected and transmitted light beams. J. Opt. 15, 014017 (2013).

    ADS  Article  Google Scholar 

  12. 12

    Haefner, D., Sukhov, S. & Dogariu, A. Conservative and nonconservative torques in optical binding. Phys. Rev. Lett. 103, 173602 (2009).

    ADS  Article  Google Scholar 

  13. 13

    Kajorndejnukul, V., Ding, W., Sukhov, S., Qiu, C. W. & Dogariu, A. Linear momentum increase and negative optical forces at dielectric interface. Nature Photon. 7, 787–790 (2013).

    ADS  Article  Google Scholar 

  14. 14

    Borghese, F., Denti, P. & Saija, R. Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics (Springer, 2007).

    Google Scholar 

  15. 15

    Chaumet, P. C. & Nieto-Vesperinas, M. Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett. 25, 1065–1067 (2000).

    ADS  Article  Google Scholar 

  16. 16

    Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge University Press, 2006).

    Google Scholar 

  17. 17

    Wang, S. B. & Chan, C. T. Lateral optical force on chiral particles near a surface. Nature Commun. 5, 3307 (2014).

    ADS  Article  Google Scholar 

  18. 18

    Bekshaev, A. Y., Angelsky, O. V., Hanson, S. G. & Zenkova, C. Y. Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows. Phys. Rev. A 86, 023847 (2012).

    ADS  Article  Google Scholar 

  19. 19

    Salandrino, A., Fardad, S. & Christodoulides, D. N. Generalized Mie theory of optical forces. J. Opt. Soc. Am. B 29, 855–866 (2012).

    ADS  Article  Google Scholar 

  20. 20

    Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015).

    Google Scholar 

  21. 21

    Sukhov, S., Kajorndejnukul, V., Broky, J. & Dogariu, A. Forces in Aharonov–Bohm optical setting. Optica 1, 383–387 (2014).

    ADS  Article  Google Scholar 

  22. 22

    Omenyi, S. N., Neumann, A. W. & van Oss, C. J. Attraction and repulsion of solid particles by solidification fronts I. Thermodynamic effects. J. Appl. Phys. 52, 789–795 (1981).

    ADS  Article  Google Scholar 

  23. 23

    Wunenburger, R. et al. Fluid flows driven by light scattering. J. Fluid Mech. 666, 273–307 (2011).

    ADS  Article  Google Scholar 

  24. 24

    Kajorndejnukul, V., Sukhov, S. & Dogariu, A. Controlled transport through optical advection. Sci. Rep. 5, 14861 (2015).

    ADS  Article  Google Scholar 

  25. 25

    Rotne, J. & Prager, S. Variational treatment of hydrodynamic interaction in polymers. J. Chem. Phys. 50, 4831–4837 (1969).

    ADS  Article  Google Scholar 

  26. 26

    Ladavac, K. & Grier, D. G. Colloidal hydrodynamic coupling in concentric optical vortices. Europhys. Lett. 70, 548–554 (2005).

    ADS  Article  Google Scholar 

  27. 27

    Happel, J. & Brenner, H. Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Martinus Nijhoff, 1983).

    Google Scholar 

  28. 28

    Danov, K., Aust, R., Durst, F. & Lange, U. Influence of the surface viscosity on the hydrodynamic resistance and surface diffusivity of a large brownian particle. J. Colloid Interface Sci. 175, 36–45 (1995).

    ADS  Article  Google Scholar 

  29. 29

    Pilat, D. W. et al. Dynamic measurement of the force required to move a liquid drop on a solid surface. Langmuir 28, 16812−16820 (2012).

    Article  Google Scholar 

  30. 30

    Gao, Y. & Kilfoil, M. L. Accurate detection and complete tracking of large populations of features in three dimensions. Opt. Express 17, 4685–4704 (2009).

    ADS  Article  Google Scholar 

Download references


This work was partially supported by NSF grant no. 1159530.

Author information




S.S. and A.D. conceived the idea and designed the experiments. S.S. performed theoretical analysis. V.K. and R.R.N. performed the experiments. S.S. and V.K. contributed materials/analysis tools. S.S., V.K., R.R.N. and A.D. analysed the data. S.S. and A.D. wrote the paper.

Corresponding author

Correspondence to Aristide Dogariu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 684 kb)

Supplementary information

Supplementary movie 1 (AVI 26168 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sukhov, S., Kajorndejnukul, V., Naraghi, R. et al. Dynamic consequences of optical spin–orbit interaction. Nature Photon 9, 809–812 (2015). https://doi.org/10.1038/nphoton.2015.200

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing