Room-temperature InP distributed feedback laser array directly grown on silicon


Fully exploiting the silicon photonics platform for large-volume, cost-sensitive applications requires a fundamentally new approach to directly integrate high-performance laser sources using wafer-scale fabrication methods. Direct-bandgap III–V semiconductors allow efficient light generation, but the large mismatch in lattice constant, thermal expansion and crystal polarity makes their epitaxial growth directly on silicon extremely complex. Using a selective-area growth technique in confined regions, we surpass this fundamental limit and demonstrate an optically pumped InP-based distributed feedback laser array monolithically grown on (001)-silicon operating at room temperature and suitable for wavelength-division-multiplexing applications. The novel epitaxial technology suppresses threading dislocations and anti-phase boundaries to a less than 20-nm-thick layer, which does not affect device performance. Using an in-plane laser cavity defined using standard top-down lithographic patterning together with a high yield and high uniformity provides scalability and a straightforward path towards cost-effective co-integration with silicon photonic and electronic circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Monolithic integration of InP lasers on Si.
Figure 2: Laser operation in a single monolithically integrated laser.
Figure 3: DFB laser array with lithographically controlled emission wavelengths.
Figure 4: High yield and scalability of the Si integrated laser array.


  1. 1

    Liu, A. et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004).

    ADS  Article  Google Scholar 

  2. 2

    Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    ADS  Article  Google Scholar 

  3. 3

    Assefa, S., Xia, F. & Vlasov, Y. A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464, 80–84 (2010).

    ADS  Article  Google Scholar 

  4. 4

    Michel, J., Liu, J. F. & Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nature Photon. 4, 527–534 (2010).

    ADS  Article  Google Scholar 

  5. 5

    Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).

    ADS  Article  Google Scholar 

  6. 6

    Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    Article  Google Scholar 

  7. 7

    Gunn, C. CMOS photonics for high-speed interconnects. IEEE Micro. 26, 58–66 (2006).

    Article  Google Scholar 

  8. 8

    Ohashi, K. et al. On-chip optical interconnect. Proc. IEEE 97, 1186–1198 (2009).

    Article  Google Scholar 

  9. 9

    Fang, A. W. et al. Electrically pumped hybrid AlGaInAs–silicon evanescent laser. Opt. Express 14, 9203–9210 (2006).

    ADS  Article  Google Scholar 

  10. 10

    Van Campenhout, J. et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 15, 6744–6749 (2007).

    ADS  Article  Google Scholar 

  11. 11

    Liu, L. et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nature Photon. 4, 182–187 (2010).

    ADS  Article  Google Scholar 

  12. 12

    Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    ADS  Article  Google Scholar 

  13. 13

    Liu, J. F., Sun, X. C., Camacho-Aguilera, R., Kimerling, L. C. & Michel, J. Ge-on-Si laser operating at room temperature. Opt. Lett. 35, 679–681 (2010).

    ADS  Article  Google Scholar 

  14. 14

    Takahashi, Y. et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 498, 470–474 (2013).

    ADS  Article  Google Scholar 

  15. 15

    Wirths, S. et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nature Photon. 9, 88–92 (2015).

    ADS  Article  Google Scholar 

  16. 16

    ITRS. International Technology Working Groups International Technology Roadmap for Semiconductors (2010);

  17. 17

    Ayers, J. E. Heteroepitaxy of Semiconductors – Theory, Growth, and Characterization (CRC, 2007).

    Google Scholar 

  18. 18

    Hossain, N. et al. Reduced threshold current dilute nitride Ga(NAsP)/GaP quantum well lasers grown by MOVPE. Electron. Lett. 47, 931–933 (2011).

    Article  Google Scholar 

  19. 19

    Reboul, J. R., Cerutti, L., Rodriguez, J. B., Grech, P. & Tournie, E. Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si. Appl. Phys. Lett. 99, 121113 (2011).

    ADS  Article  Google Scholar 

  20. 20

    Chen, S. M. et al. 1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C. Electron. Lett. 50, 1467–1468 (2014).

    Article  Google Scholar 

  21. 21

    Wang, T., Liu, H., Lee, A., Pozzi, F. & Seeds, A. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt. Express 19, 11381–11386 (2011).

    ADS  Article  Google Scholar 

  22. 22

    Chen, R. et al. Nanolasers grown on silicon. Nature Photon. 5, 170–175 (2011).

    ADS  Article  Google Scholar 

  23. 23

    Wang, Z. et al. Polytypic InP nanolaser monolithically integrated on (001) silicon. Nano. Lett. 13, 5063–5069 (2013).

    ADS  Article  Google Scholar 

  24. 24

    del Alamo, J. A. Nanometre-scale electronics with III–V compound semiconductors. Nature 479, 317–323 (2011).

    ADS  Article  Google Scholar 

  25. 25

    Guo, W. et al. Selective metal–organic chemical vapor deposition growth of high quality GaAs on Si(001). Appl. Phys. Lett. 105, 062101 (2014).

    ADS  Article  Google Scholar 

  26. 26

    Merckling, C. et al. Selective-area metal organic vapor-phase epitaxy of III–V on Si: what about defect density? ECS Trans. 64, 513–521 (2014).

    Article  Google Scholar 

  27. 27

    Merckling, C. et al. Heteroepitaxy of InP on Si(001) by selective-area metal organic vapor-phase epitaxy in sub-50 nm width trenches: the role of the nucleation layer and the recess engineering. J. Appl. Phys. 115, 023710 (2014).

    ADS  Article  Google Scholar 

  28. 28

    Waldron, N. et al. InGaAs gate-all-around nanowire devices on 300mm Si substrates. IEEE Electron. Device Lett. 35, 1097–1099 (2014).

    ADS  Article  Google Scholar 

  29. 29

    Paladugu, M. et al. Site selective integration of III–V materials on Si for nanoscale logic and photonic devices. Cryst. Growth Des. 12, 4696–4702 (2012).

    Article  Google Scholar 

  30. 30

    Mitsuru, S., Hidefumi, M., Yoshio, I., Yoshihisa, S. & Masami, T. 1.5 µm-long-wavelength multiple quantum well laser on a Si substrate. Jpn J. Appl. Phys. 30, 3876 (1991).

    Article  Google Scholar 

  31. 31

    Yang, J. & Bhattacharya, P. Integration of epitaxially-grown InGaAs/GaAs quantum dot lasers with hydrogenated amorphous silicon waveguides on silicon. Opt. Express 16, 5136–5140 (2008).

    ADS  Article  Google Scholar 

  32. 32

    Liu, H. Y. et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nature Photon. 5, 416–419 (2011).

    ADS  Article  Google Scholar 

  33. 33

    Boroditsky, M. et al. Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes. J. Appl. Phys. 87, 3497 (2000).

    ADS  Article  Google Scholar 

  34. 34

    Cohen, D. & Carter, C. B. Structure of the (110) antiphase boundary in gallium phosphide. J. Microsc. 208, 84–99 (2002).

    MathSciNet  Article  Google Scholar 

  35. 35

    Narayanan, V., Mahajan, S., Bachmann, K. J., Woods, V. & Dietz, N. Antiphase boundaries in GaP layers grown on (001) Si by chemical beam epitaxy. Acta Mater. 50, 1275–1287 (2002).

    Article  Google Scholar 

  36. 36

    Coldren, L. A., Corzine, S. W. & Mashanovitch, M. L. Diode Lasers and Photonic Integrated Circuits 2nd edn (Wiley, 2012).

    Google Scholar 

  37. 37

    Tatebayashi, J. et al. Room-temperature lasing in a single nanowire with quantum dots. Nature Photon. 9, 501–505 (2015).

    ADS  Article  Google Scholar 

  38. 38

    Koch, T. L. & Bowers, J. E. Nature of wavelength chirping in directly modulated semiconductor lasers. Electron. Lett. 20, 1038–1040 (1984).

    Article  Google Scholar 

  39. 39

    Casey, H. C. & Buehler, E. Evidence for low surface recombination velocity on n-type InP. Appl. Phys. Lett. 30, 247 (1977).

    ADS  Article  Google Scholar 

  40. 40

    Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    ADS  Article  Google Scholar 

  41. 41

    Waldron, N. et al. An InGaAs/InP quantum well FinFET using the replacement fin process integrated in an RMG flow on 300 mm Si substrates. IEEE Symposium on VLSI Technology 2014: Digest of Technical Papers 1–2 (2014).

Download references


This work was supported by the European Commission through ERC project ULPPIC (Ultra Low Power Photonic IC) and imec's industry-affiliation programme on optical I/O. The authors thank R. Baets, G. Roelkens and N. Le Thomas for discussions.

Author information




D.V.T. proposed and coordinated the overall project. J.V.C., Z.W. and P.A. suggested the idea of an in-plane laser on silicon. B.T. explored the theoretical design. Z.W. developed the process flow. C.M. and W.G. carried out the epitaxial growth. M.P. processed the silicon template. B.T. and Z.W. performed the photoluminescence characterizations. Z.W. and D.V.T. composed the manuscript.

Corresponding author

Correspondence to Dries Van Thourhout.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 935 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Tian, B., Pantouvaki, M. et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photon 9, 837–842 (2015).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing