Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre

Subjects

Abstract

Generally, light becomes scattered in space and time as it is coupled among multiple spatial paths during propagation through disordered media or multimode waveguides. This limits the pulse duration and spatial coherence that can be obtained after light exits such a medium. Eisenbud–Wigner–Smith eigenstates, originally proposed in nuclear scattering, are a unique set of input/output states that, despite spatiotemporal scattering during propagation, arrive at the output temporally unscattered. In fibre optics, these states manifest as principal modes that allow pulses and spatial coherence to be maintained despite propagation through a medium that would otherwise have destroyed these properties. These states generalize the phenomena of orthogonal fast/slow axes in a birefringent object to a basis with N axes, where N is the total number of spatial/polarization modes in the scattering medium. We experimentally demonstrate the existence of principal modes using a 100 m length of multimode fibre as the propagation medium.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Propagation of an arbitrary spatial state and a principal mode through a scattering medium.
Figure 2: System for measurement of the optical transfer matrices, U(ω), and observation of the principal modes.
Figure 3: Calculation of the principal modes.
Figure 4: Wavelength response of each mode basis.
Figure 5: Observation of a principal mode (PM5) and comparison with a Laguerre-Gaussian mode (LG0,1H) in a six-mode fibre.
Figure 6: Second-order mode dispersion of principal modes.

References

  1. 1

    Bruce, N. C. et al. Investigation of the temporal spread of an ultrashort light pulse on transmission through a highly scattering medium. Appl. Opt. 34, 5823–5828 (1995).

    ADS  Article  Google Scholar 

  2. 2

    Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nature Photon. 9, 529–535 (2015).

    ADS  Article  Google Scholar 

  3. 3

    Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    ADS  Article  Google Scholar 

  4. 4

    Kim, M. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nature Photon. 6, 581–585 (2012).

    ADS  Article  Google Scholar 

  5. 5

    Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nature Commun. 3, 1027 (2012).

    ADS  Article  Google Scholar 

  6. 6

    Carpenter, J., Eggleton, B. J. & Schröder, J. 110×110 optical mode transfer matrix inversion. Opt. Express 22, 96–101 (2014).

    ADS  Article  Google Scholar 

  7. 7

    Carpenter, J., Eggleton, B. J. & Schröder, J. Reconfigurable spatially-diverse optical vector network analyser. Opt. Express 22, 2706–2713 (2014).

    ADS  Article  Google Scholar 

  8. 8

    Fontaine, N. K. et al. in Proceedings of the Optical Fiber Communication Conference, paper OW1K.2 (Optical Society of America, 2013).

  9. 9

    Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express 20, 10583–10590 (2012).

    ADS  Article  Google Scholar 

  10. 10

    Bianchi, S. & Di Leonardo, R. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip 12, 635–639 (2012).

    Article  Google Scholar 

  11. 11

    Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Article  Google Scholar 

  12. 12

    Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011).

    ADS  Article  Google Scholar 

  13. 13

    McCabe, D. J. et al. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. Nature Commun. 2, 447 (2011).

    ADS  Article  Google Scholar 

  14. 14

    Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 103901 (2011).

    ADS  Article  Google Scholar 

  15. 15

    Panicker, R. A., Lau, A. P. T., Wilde, J. P. & Kahn, J. M. Experimental comparison of adaptive optics algorithms in 10-Gb/s multimode fibre systems. J. Lightw. Technol. 27, 5783–5789 (2009).

    ADS  Article  Google Scholar 

  16. 16

    Fan, S. & Kahn, J. M. Principal modes in multimode waveguides. Opt. Lett. 30, 135–137 (2005).

    ADS  Article  Google Scholar 

  17. 17

    Shemirani, M. B. & Kahn, J. M. Higher-order modal dispersion in graded-index multimode fiber. J. Lightw. Technol. 27, 5461–5468 (2009).

    ADS  Article  Google Scholar 

  18. 18

    Shemirani, M. B. Modelling and Compensation of Modal Dispersion in Graded-index Multimode Fiber PhD Thesis, Stanford Univ. (2010).

  19. 19

    Shemirani, M. B., Mao, W., Panicker, R. A. & Kahn, J. M. Principal modes in graded-index multimode fibre in presence of spatial- and polarization-mode coupling. J. Lightw. Technol. 27, 1248–1261 (2009).

    ADS  Article  Google Scholar 

  20. 20

    Carpenter, J., Eggleton, B. J. & Schröder, J. in Proceedings of the European Conference on Optical Communication (ECOC), PD.2.1 (IEEE, 2014).

  21. 21

    Milione, G., Nolan, D. A. & Alfano, R. R. Determining principal modes in a multimode optical fiber using the mode dependent signal delay method. J. Opt. Soc. Am. B 32, 143–149 (2015).

    ADS  Article  Google Scholar 

  22. 22

    Nolan, D. A., Milione, G. & Alfano, R. R. Spatial principal states and vortex modes in optical fiber for communications. Proc. SPIE 8637, http://dx.doi.org/10.1117/12.2019417 (2013).

  23. 23

    Smith, F. T. Lifetime matrix in collision theory. Phys. Rev. 118, 349–356 (1960).

    ADS  MathSciNet  Article  Google Scholar 

  24. 24

    Brouwer, P. W., Prahm, K. M. & Beenakker, C. W. J. Quantum mechanical time-delay matrix in chaotic scattering. Phys. Rev. Lett. 78, 4737 (1997).

    ADS  Article  Google Scholar 

  25. 25

    Rotter, S., Ambichl, P. & Libisch, F. Generating particlelike scattering states in wave transport. Phys. Rev. Lett. 106, 120602 (2011).

    ADS  Article  Google Scholar 

  26. 26

    Redding, B., Alam, M., Seifert, M. & Cao, H. High-resolution and broadband all-fiber spectrometers. Optica 1, 175 (2014).

    ADS  Article  Google Scholar 

  27. 27

    Redding, B., Liew, S. F., Sarma, R. & Cao, H. Compact spectrometer based on a disordered photonic chip. Nature Photon. 7, 746–751 (2013).

    ADS  Article  Google Scholar 

  28. 28

    Poole, C. D. & Wagner, R. E. Phenomenological approach to polarization dispersion in long single-mode fibers. Electron. Lett. 22, 1029–1030 (1986).

    Article  Google Scholar 

  29. 29

    Gordon, J. P. & Kogelnik, H. PMD fundamentals: polarization mode dispersion in optical fibers. Proc. Natl Acad. Sci. USA 97, 4541–4550 (2000).

    ADS  Article  Google Scholar 

  30. 30

    Heffner, B. L. Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis. IEEE Photon. Technol. Lett. 4, 1066–1069 (1992).

    ADS  Article  Google Scholar 

  31. 31

    Heffner, B. L. Accurate, automated measurement of differential group delay dispersion and principal state variation using Jones matrix eigenanalysis. IEEE Photon. Technol. Lett. 5, 814–817 (1993).

    ADS  Article  Google Scholar 

  32. 32

    Betti, S. et al. Evolution of the bandwidth of the principal states of polarization in single-mode fibers. Opt. Lett. 16, 467–469 (1991).

    ADS  Article  Google Scholar 

  33. 33

    Kogelnik, H., Nelson, L. E., Gordon, J. P. & Jopson, R. M. Jones matrix for second-order polarization mode dispersion. Opt. Lett. 25, 19–21 (2000).

    ADS  Article  Google Scholar 

  34. 34

    Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    ADS  Article  Google Scholar 

  35. 35

    Bachelard, N., Gigan, S., Noblin, X. & Sebbah, P. Adaptive pumping for spectral control of random lasers. Nature Phys. 10, 426–431 (2014).

    ADS  Article  Google Scholar 

  36. 36

    Richardson, D. J., Nilsson, J. & Clarkson, W. A. High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B 27, B63–B92 (2010).

    Article  Google Scholar 

  37. 37

    Jauregui, C., Limpert, J. & Tünnermann, A. High-power fibre lasers. Nature Photon. 7, 861–867 (2013).

    ADS  Article  Google Scholar 

  38. 38

    Ryf, R. et al. in Optical Fiber Communication Conference: Postdeadline Papers, paper Th5B.1 (Optical Society of America, 2014).

  39. 39

    Carpenter, J., Thomsen, B. C. & Wilkinson, T. D. Degenerate mode-group division multiplexing. J. Lightw. Technol. 30, 3946–3952 (2012).

    ADS  Article  Google Scholar 

  40. 40

    Kwiat, P. G., Berglund, A. J., Altepeter, J. B. & White, A. G. Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000).

    ADS  Article  Google Scholar 

  41. 41

    Antonelli, C., Shtaif, M. & Brodsky, M. Sudden death of entanglement induced by polarization mode dispersion. Phys. Rev. Lett. 106, 080404 (2011).

    ADS  Article  Google Scholar 

  42. 42

    Peruzzo, A., Laing, A., Politi, A., Rudolph, T. & O'Brien, J. L. Multimode quantum interference of photons in multiport integrated devices. Nature Commun. 2, 224 (2011).

    ADS  Article  Google Scholar 

  43. 43

    Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).

    ADS  Article  Google Scholar 

  44. 44

    Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    ADS  Article  Google Scholar 

  45. 45

    Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nature Photon. 6, 45–49 (2012).

    ADS  Article  Google Scholar 

  46. 46

    Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    ADS  Article  Google Scholar 

  47. 47

    Downie, J. D. et al. Transmission of 112 Gb/s PM-QPSK signals over up to 635 km of multimode optical fiber. Opt. Express 19, B363–B369 (2011).

    Article  Google Scholar 

  48. 48

    Kogelnik, H. & Winzer, P. J. Modal birefringence in weakly guiding fibers. J. Lightw. Technol. 30, 2240–2245 (2012).

    ADS  Article  Google Scholar 

  49. 49

    Antonelli, C., Mecozzi, A., Shtaif, M. & Winzer, P. J. Stokes-space analysis of modal dispersion in fibers with multiple mode transmission. Opt. Express 20, 11718–11733 (2012).

    ADS  Article  Google Scholar 

  50. 50

    Hu, Q. & Shieh, W. Autocorrelation function of channel matrix in few-mode fibers with strong mode coupling. Opt. Express 21, 22153–22165 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Corning for providing the six-mode fibre used in these experiments. The authors also acknowledge the Linkage (LP120100661) with Finisar Australia, Laureate Fellowship (FL120100029), Centre of Excellence (CUDOS, CE110001018) and DECRA (DE120101329) programmes of the Australian Research Council.

Author information

Affiliations

Authors

Contributions

J.C. designed and performed the experiments, analysed the data and wrote the document. J.S. led the project, helped with data analysis and article writing and provided funding. B.E. provided mentoring and guidance regarding the general direction of the project and provided funding.

Corresponding author

Correspondence to Joel Carpenter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 11373 kb)

Supplementary information

Supplementary movie 1 (MP4 5495 kb)

Supplementary information

Supplementary movie 1 (MP4 5539 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carpenter, J., Eggleton, B. & Schröder, J. Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre. Nature Photon 9, 751–757 (2015). https://doi.org/10.1038/nphoton.2015.188

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing