Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlling light with metamaterial-based nonlinear photonic crystals

Abstract

Since the seminal paper by Bloembergen and colleagues on nonlinear optical interactions1, this field has supplied some of the most important contributions to optics-related science and applications, including the exceptional ability to generate coherent light throughout the optical spectrum2,3,4. Recently, a new family of nanostructured optical materials, so called metamaterials, with artificial effective nonlinearities has been demonstrated5,6,7,8,9,10. Controlling their nonlinear output has the potential to open up a whole new area of fundamental research and lead to the development of efficient, active, integrated and ultra-compact nonlinear optical devices. Here, we experimentally demonstrate unprecedented control over the nonlinear emission from metamaterials by constructing the first nonlinear metamaterial-based photonic crystals. We specifically demonstrate engineered nonlinear diffraction and all-optical scanning, enabling ultra-wide angular scanning of the nonlinear output from the metamaterial. We also demonstrate intense focusing of the nonlinear signal directly from the metamaterial, resulting in an intensity enhanced by nearly two orders of magnitude.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Manipulating the direction of nonlinear emission by NLMPCs.
Figure 2: Experimental demonstration of nonlinear diffraction from an NLMPC.
Figure 3: Nonlinear diffraction from two-dimensional NLMPCs.
Figure 4: Experimental manipulation of the direction of SH radiation and all-optical scanning.
Figure 5: Nonlinear Fresnel zone plate from NLMPC.

References

  1. 1

    Armstrong, J., Bloembergen, N., Ducuing, J. & Pershan, P. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    ADS  Article  Google Scholar 

  2. 2

    Paul, A. et al. Quasi-phase-matched generation of coherent extreme-ultraviolet light. Nature 421, 51–54 (2003).

    ADS  Article  Google Scholar 

  3. 3

    Yeh, K.-L., Hoffmann, M. C., Hebling, J. & Nelson, K. A. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett. 90, 171121 (2007).

    ADS  Article  Google Scholar 

  4. 4

    Fejer, M. M., Magel, G. A., Jundt, D. H. & Byer, R. L. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron. 28, 2631–2654 (1992).

    ADS  Article  Google Scholar 

  5. 5

    Klein, M. W., Enkrich, C., Wegener, M. & Linden, S. Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006).

    ADS  Article  Google Scholar 

  6. 6

    Shadrivov, I. V., Zharov, A. A. & Kivshar, Y. S. Second-harmonic generation in nonlinear left-handed metamaterials. J. Opt. Soc. Am. B 23, 529 (2006).

    ADS  Article  Google Scholar 

  7. 7

    Husu, H. et al. Metamaterials with tailored nonlinear optical response. Nano Lett. 12, 673–677 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Ciracì, C., Poutrina, E., Scalora, M. & Smith, D. R. Origin of second-harmonic generation enhancement in optical split-ring resonators. Phys. Rev. B 85, 201403 (2012).

    ADS  Article  Google Scholar 

  9. 9

    Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nature Photon. 6, 737–748 (2012).

    ADS  Article  Google Scholar 

  10. 10

    Salomon, A., Zielinski, M., Kolkowski, R., Zyss, J. & Prior, Y. Size and shape resonances in second harmonic generation from silver nanocavities. J. Phys. Chem. C 117, 22377–22382 (2013).

    Article  Google Scholar 

  11. 11

    Cai, W. & Shalaev, V. M. Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

    Google Scholar 

  12. 12

    Engheta, N. & Ziolkowski, R. Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

    Book  Google Scholar 

  13. 13

    Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    ADS  Article  Google Scholar 

  14. 14

    Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    ADS  Article  Google Scholar 

  15. 15

    Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16

    Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X. An optical cloak made of dielectrics. Nature Mater. 8, 568–571 (2009).

    ADS  Article  Google Scholar 

  17. 17

    Ellenbogen, T., Seo, K. & Crozier, K. B. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett. 12, 1026–1031 (2012).

    ADS  Article  Google Scholar 

  18. 18

    Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature Mater. 11, 917–924 (2012).

    ADS  Article  Google Scholar 

  19. 19

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).

    ADS  Article  Google Scholar 

  20. 20

    Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    ADS  Article  Google Scholar 

  21. 21

    Linden, S. et al. Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys. Rev. Lett. 109, 015502 (2012).

    ADS  Article  Google Scholar 

  22. 22

    Arie, A. & Voloch, N. Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals. Laser Photon. Rev. 4, 355–373 (2010).

    ADS  Article  Google Scholar 

  23. 23

    Berger, V. Nonlinear photonic crystals. Phys. Rev. Lett. 81, 4136–4139 (1998).

    ADS  Article  Google Scholar 

  24. 24

    Ellenbogen, T., Dolev, I. & Arie, A. Mode conversion in quadratic nonlinear crystals. Opt. Lett. 33, 1207–1209 (2008).

    ADS  Article  Google Scholar 

  25. 25

    Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A. & Arie, A. Nonlinear generation and manipulation of Airy beams. Nature Photon. 3, 395–398 (2009).

    ADS  Article  Google Scholar 

  26. 26

    Ellenbogen, T., Ganany-Padowicz, A. & Arie, A. Nonlinear photonic structures for all-optical deflection. Opt. Express 16, 3077–3082 (2008).

    ADS  Article  Google Scholar 

  27. 27

    Tanzilli, S. et al. Highly efficient photon-pair source using periodically poled lithium niobate waveguide. Electron. Lett. 37, 26 (2001).

    Article  Google Scholar 

  28. 28

    Rockstuhl, C. et al. On the reinterpretation of resonances in split-ring-resonators at normal incidence. Opt. Express 14, 8827 (2006).

    ADS  Article  Google Scholar 

  29. 29

    Saltiel, S. M. et al. Multiorder nonlinear diffraction in frequency doubling processes. Opt. Lett. 34, 848 (2009).

    ADS  Article  Google Scholar 

  30. 30

    Sheng, Y., Kong, Q., Wang, W., Kalinowski, K. & Krolikowski, W. Theoretical investigations of nonlinear Raman–Nath diffraction in the frequency doubling process. J. Phys. B 45, 055401 (2012).

    ADS  Article  Google Scholar 

  31. 31

    Guarino, A., Poberaj, G., Rezzonico, D., Degl'Innocenti, R. & Günter, P. Electro-optically tunable microring resonators in lithium niobate. Nature Photon. 1, 407–410 (2007).

    ADS  Article  Google Scholar 

  32. 32

    Rose, A., Huang, D. & Smith, D. R. Controlling the second harmonic in a phase-matched negative-index metamaterial. Phys. Rev. Lett. 107, 063902 (2011).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Israeli Science Foundation (grant no. 1331/13) and by the European Commission Marie Curie Career Integration Grant (grant no. 333821). S.K.Z. acknowledges support from the Tel-Aviv University Center for Renewable Energy President Scholarship for Outstanding PhD Students. The authors thank Y. Sivan and S. Fleischer for discussions and comments on this work.

Author information

Affiliations

Authors

Contributions

N.S. performed the numerical simulations, designed and constructed the experimental set-up, and carried out measurements and data analysis. S.K.-Z. performed numerical simulations, carried out data analysis and helped with the measurements. N.H. fabricated the samples. T.E. initiated and mentored the project. All authors discussed the results, contributed to data interpretation and wrote the manuscript.

Corresponding authors

Correspondence to Nadav Segal or Tal Ellenbogen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1727 kb)

Supplementary movie 1

Supplementary movie 1 (MOV 512 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Segal, N., Keren-Zur, S., Hendler, N. et al. Controlling light with metamaterial-based nonlinear photonic crystals. Nature Photon 9, 180–184 (2015). https://doi.org/10.1038/nphoton.2015.17

Download citation

Further reading

Search

Quick links