High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate

Abstract

Powerful coherent light with a spectrum spanning the mid-infrared (MIR) spectral range is crucial for a number of applications in natural as well as life sciences, but so far has only been available from large-scale synchrotron sources1. Here we present a compact apparatus that generates pulses with a sub-two-cycle duration and with an average power of 0.1 W and a spectral coverage of 6.8–16.4 μm (at −30 dB). The demonstrated source combines, for the first time in this spectral region, a high power, a high repetition rate and phase coherence. The MIR pulses emerge via difference-frequency generation (DFG) driven by the nonlinearly compressed pulses of a Kerr-lens mode-locked ytterbium-doped yttrium–aluminium–garnet (Yb:YAG) thin-disc oscillator. The resultant 100 MHz MIR pulse train is hundreds to thousands of times more powerful than state-of-the-art frequency combs that emit in this range2,3,4, and offers a high dynamic range for spectroscopy in the molecular fingerprint region4,5,6,7 and an ideal prerequisite for hyperspectral imaging8 as well as for the time-domain coherent control of vibrational dynamics9,10,11.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Driving laser.
Figure 2: MIR generation and detection set-up.
Figure 3: MIR beam profile.
Figure 4: DFG results.

References

  1. 1

    Cinque, G., Frogley, M. D. & Bartolini, R. Far-IR/THz spectral characterization of the coherent synchrotron radiation emission at diamond IR beamline B22. Rend. Fis. Acc. Lincei 25 (suppl. 1), 33–47 (2011).

    Article  Google Scholar 

  2. 2

    Gambetta, A. et al. Milliwatt-level frequency combs in the 8–14 μm range via difference frequency generation from an Er:fiber oscillator. Opt. Lett. 38, 1155–1157 (2013).

    ADS  Article  Google Scholar 

  3. 3

    Keilmann, F. & Amarie, S. Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation. J. Infrared Millim. Te. 33, 479–484 (2012).

    Article  Google Scholar 

  4. 4

    Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nature Photon. 6, 440–449 (2012).

    ADS  Article  Google Scholar 

  5. 5

    Adler, F., Thorpe, M. J., Cossel, K. C. & Ye, J. Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. 3, 175–205 (2010).

    Article  Google Scholar 

  6. 6

    Todd, M. W. et al. Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 µm) optical parametric oscillator. Appl. Phys. B 75, 367 (2002).

    ADS  Article  Google Scholar 

  7. 7

    Griffiths, P. R. & De Haseth, J. A . Fourier Transform Infrared Spectrometry 2nd edn (Wiley, 2007).

    Google Scholar 

  8. 8

    Dupont, S. et al. IR microscopy utilizing intense supercontinuum light source. Opt. Express 20, 4887–4892 (2012).

    ADS  Article  Google Scholar 

  9. 9

    Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    ADS  Article  Google Scholar 

  10. 10

    Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photon. 8, 119–123 (2014).

    ADS  Article  Google Scholar 

  11. 11

    Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nature Photon. 8, 205–213 (2014).

    ADS  Article  Google Scholar 

  12. 12

    Crosson, E. R. et al. Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath. Anal. Chem. 74, 2003–2008 (2002).

    Article  Google Scholar 

  13. 13

    Foltynowicz, A., Masłowski, P., Fleisher, A. J., Bjork, B. J. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Appl. Phys. B 110, 163–175 (2013).

    ADS  Article  Google Scholar 

  14. 14

    Biegert, J., Bates, P. K. & Chalus, O. New mid-infrared light sources. IEEE JSTQE 18, 521–540 (2012).

    ADS  Google Scholar 

  15. 15

    Meek, S. A., Poisson, A., Guelachvili, G., Hänsch, T. W. & Picqué, N. Fourier transform spectroscopy around 3 µm with a broad difference frequency comb. Appl. Phys. B 114, 573–578 (2014).

    ADS  Article  Google Scholar 

  16. 16

    Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17

    Cousin, S. L. et al. High-flux table-top soft X-ray source driven by sub-2-cycle, CEP stable, 1.85-µm 1-kHz pulses for carbon K-edge spectroscopy. Opt. Lett. 39, 5383–5386 (2014).

    ADS  Article  Google Scholar 

  18. 18

    Petrov, V. Parametric down-conversion devices: the coverage of the mid-infrared spectral range by solid-state laser sources. Opt. Mater. 34, 536–554 (2012).

    ADS  Article  Google Scholar 

  19. 19

    Petersen, C. R. et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photon. 8, 830–834 (2014).

    ADS  Article  Google Scholar 

  20. 20

    Møller, U. et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt. Express 23, 3282–3291 (2015).

    ADS  Article  Google Scholar 

  21. 21

    Kaindl, R. A., Eickemeyer, F., Woerner, M. & Elsaesser, T. Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory. Appl. Phys. Lett. 75, 1060–1062 (1999).

    ADS  Article  Google Scholar 

  22. 22

    Fattahi, H., Schwarz, A., Keiber, S. & Karpowicz, N. Efficient, octave-spanning difference-frequency generation using few-cycle pulses in simple collinear geometry. Opt. Lett. 38, 4216–4219 (2013).

    ADS  Article  Google Scholar 

  23. 23

    Zhang, J. et al. 260-megahertz, megawatt-level thin-disk oscillator. Opt. Lett. 40, 1627–1630 (2015).

    ADS  Article  Google Scholar 

  24. 24

    Pronin, O. et al. High-power multi-megahertz source of waveform-stabilised few-cycle light. Nature Commun. 6, 6988 (2015).

    ADS  Article  Google Scholar 

  25. 25

    Porer, M., Ménard, J.-M. & Huber, R. Shot noise reduced terahertz detection via spectrally postfiltered electro-optic sampling. Opt. Lett. 39, 2435–2438 (2014).

    ADS  Article  Google Scholar 

  26. 26

    Isaenko, L. et al. Growth and properties of LiGaX2 (X = S, Se, Te) single crystals for nonlinear optical applications in the mid-IR. Cryst. Res. Technol. 38, 379–387 (2003).

    Article  Google Scholar 

  27. 27

    Brons, J. et al. Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Opt. Lett. 39, 6442–6445 (2014).

    ADS  Article  Google Scholar 

  28. 28

    Jocher, C., Eidam, T., Hädrich, S., Limpert, J. & Tünnermann, A. Sub 25 fs pulses from solid core nonlinear compression stage at 250 W of average power. Opt. Lett. 37, 4407–4409 (2012).

    ADS  Article  Google Scholar 

  29. 29

    Nikogosyan, D. N. Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

    Google Scholar 

  30. 30

    Arisholm, G. General numerical methods for simulating second-order nonlinear interactions in birefringent media. J. Opt. Soc. Am. B 14, 2543–2549 (1997).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Munich Centre for Advanced Photonics’, Fundacio Cellex Barcelona, the Ministerio de Economa y Competitividad through Plan Nacional (FIS2011-30465-C02-01), the Catalan Agencia de Gestió D'Ajuts Universitaris i de Recerca with SGR 2014-2016 and Laserlab-Europe grant agreement 284464.

Author information

Affiliations

Authors

Contributions

I.P., D.S., J.Z., N.L., M.S., N.K., T.P., W.S., V.P., E.F., O.P., Z.W., F.K., A.A. and J.B. conceived and designed the experiments. I.P., D.S., J.Z., N.L., M.S., T.P., I.Z., M.P., W.S. and V.P. performed the experiments. I.P., D.S., N.L., M.S., N.K., T.P., I.Z. and W.S. analysed the data. I.P., D.S., J.Z., N.L., M.S., N.K., T.P., I.Z., V.P., E.F., O.P., Z.W., F.K., A.A. and J.B. contributed materials and/or analysis tools. I.P., D.S., J.Z., N.L., M.S., N.K., T.P., M.P., W.S., E.F., F.K., A.A. and J.B. wrote the paper.

Corresponding author

Correspondence to I. Pupeza.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pupeza, I., Sánchez, D., Zhang, J. et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nature Photon 9, 721–724 (2015). https://doi.org/10.1038/nphoton.2015.179

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing