Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Filterless narrowband visible photodetectors

Abstract

Wavelength-selective light detection is crucial for many applications, including imaging and machine vision. Narrowband spectral responses are required for colour discrimination, and current systems use broadband photodiodes combined with optical filters. This approach increases the architectural complexity and limits the quality of colour sensing. Here we report a method for tuning the spectral response to give filterless, narrowband red, green and blue photodiodes. The devices have simple planar junction architectures with the photoactive layer being a solution-processed mixture of either an organohalide perovskite or lead halide semiconductor and an organic (macro)molecule. The organic (macro)molecules modify the optical and electrical properties of the photodiode and facilitate charge collection narrowing of the device's external quantum efficiency. These red, green and blue photodiodes all possess full-width at half-maxima of <100 nm and performance metrics suitable for many imaging applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Working principles of CCN photodiodes.
Figure 2: Optical gap tunability and addition of an organic molecular component to organohalide perovskite semiconductors.
Figure 3: Working mechanism and performance of the red narrowband CCN photodiodes.
Figure 4: Device performance and bandwidth tunability of red narrowband photodiodes.
Figure 5: Device performance summary of red, green and blue narrowband CCN photodiodes.

Similar content being viewed by others

References

  1. Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nature Nanotech. 5, 391–400 (2010).

    Article  ADS  Google Scholar 

  2. Gong, X. et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665–1667 (2009).

    Article  ADS  Google Scholar 

  3. Konstantatos, G., Clifford, J., Levina, L. & Sargent, E. H. Sensitive solution-processed visible-wavelength photodetectors. Nature Photon. 1, 531–534 (2007).

    Article  ADS  Google Scholar 

  4. Baeg, K. J., Binda, M., Natali, D., Caironi, M. & Noh, Y. Y. Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25, 4267–4295 (2013).

    Article  Google Scholar 

  5. Clifford, J. P. et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nature Nanotech. 4, 40–44 (2008).

    Article  ADS  Google Scholar 

  6. Guo, F., Xiao, Z. & Huang, J. Fullerene photodetectors with a linear dynamic range of 90 dB enabled by a cross-linkable buffer layer. Adv. Opt. Mater. 1, 289–294 (2013).

    Article  Google Scholar 

  7. Armin, A. et al. Thick junction broadband organic photodiodes. Laser Photon. Rev. 8, 924–932 (2014).

    Article  ADS  Google Scholar 

  8. Guo, F. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nature Nanotech. 7, 798–802 (2012).

    Article  ADS  Google Scholar 

  9. Nishiwaki, S., Nakamura, T., Hiramoto, M., Fujii, T. & Suzuki, M. Efficient colour splitters for high-pixel-density image sensors. Nature Photon. 7, 240–246 (2013).

    Article  ADS  Google Scholar 

  10. Armin, A., Jansen-van Vuuren, R. D., Kopidakis, N., Burn, P. L. & Meredith, P. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nature Commun. 6, 6343 (2015).

    Article  ADS  Google Scholar 

  11. Lukac, R. Single-sensor imaging in consumer digital cameras: a survey of recent advances and future directions. J. Real-time Image Proc. 1, 45–52 (2006).

    Article  Google Scholar 

  12. Park, H. et al. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption. Nano Lett. 14, 1804–1809 (2014).

    Article  ADS  Google Scholar 

  13. Xu, T., Wu, Y.-K., Luo, X. & Guo, L. J. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nature Commun. 1, 59 (2010).

    Article  ADS  Google Scholar 

  14. Yokogawa, S., Burgos, S. P. & Atwater, H. A. Plasmonic color filters for CMOS image sensor applications. Nano Lett. 12, 4349–4354 (2012).

    Article  ADS  Google Scholar 

  15. Gautam, V., Bag, M. & Narayan, K. Single-pixel, single-layer polymer device as a tricolor sensor with signals mimicking natural photoreceptors. J. Am. Chem. Soc. 133, 17942–17949 (2011).

    Article  Google Scholar 

  16. Higashi, Y., Kim, K.-S., Jeon, H.-G. & Ichikawa, M. Enhancing spectral contrast in organic red-light photodetectors based on a light-absorbing and exciton-blocking layered system. J. Appl. Phys. 108, 034502 (2010).

    Article  ADS  Google Scholar 

  17. Lim, S. -J. et al. Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors. Sci. Rep. 5, 7708 (2015).

    Article  Google Scholar 

  18. Lee, K.-H. et al. Dynamic characterization of green-sensitive organic photodetectors using non-fullerene small molecules: frequency response based on the molecular structure. J. Phys. Chem. C 118, 13424–13431 (2014).

    Article  Google Scholar 

  19. Lyons, D. M. et al. Narrow band green organic photodiodes for imaging. Org. Electron. 15, 2903–2911 (2014).

    Article  Google Scholar 

  20. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotech. 9, 687–692 (2014).

    Article  ADS  Google Scholar 

  21. Kim, Y. H. et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2014).

    Article  Google Scholar 

  22. Kulkarni, S. A. et al. Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2, 9221–9225 (2014).

    Article  Google Scholar 

  23. Lin, Q., Armin, A., Lyons, D. M., Burn, P. L. & Meredith, P. Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Adv. Mater. 27, 1969–2120 (2015).

    Article  Google Scholar 

  24. Benson-Smith, J. J. et al. Formation of a ground-state charge-transfer complex in polyfluorene/[6, 6]-phenyl-C61 butyric acid methyl ester (PCBM) blend films and its role in the function of polymer/PCBM solar cells. Adv. Funct. Mater. 17, 451–457 (2007).

    Article  Google Scholar 

  25. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nature Photon. 8, 506–514 (2014).

    Article  ADS  Google Scholar 

  26. Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature Mater. 14, 193–198 (2014).

    Article  ADS  Google Scholar 

  27. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  ADS  Google Scholar 

  28. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  ADS  Google Scholar 

  29. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  ADS  Google Scholar 

  30. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    Article  ADS  Google Scholar 

  31. Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nature Photon. 9, 106–112 (2014).

    Article  ADS  Google Scholar 

  32. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Mater. 13, 897–903 (2014).

    Article  ADS  Google Scholar 

  33. Xiao, M. et al. A fast deposition–crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 126, 10056–10061 (2014).

    Article  Google Scholar 

  34. Dou, L. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Commun. 5, 5404 (2014).

    Article  ADS  Google Scholar 

  35. Hu, X. et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 24, 7373–7380 (2014).

    Article  Google Scholar 

  36. Xia, H.-R., Li, J., Sun, W.-T. & Peng, L.-M. Organohalide lead perovskite based photodetectors with much enhanced performance. Chem. Commun. 50, 13695–13697 (2014).

    Article  Google Scholar 

  37. Lee, Y. et al. High-performance perovskite–graphene hybrid photodetector. Adv. Mater. 27, 41–46 (2015).

    Article  Google Scholar 

  38. Dong, R. et al. High gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 27, 1912–1918 (2015).

    Article  Google Scholar 

  39. Li, D., Dong, G., Li, W. & Wang, L. High performance organic–inorganic perovskite–optocoupler based on low-voltage and fast response perovskite compound photodetector. Sci. Rep. 5, 7902 (2015).

    Article  ADS  Google Scholar 

  40. Sutherland, B. R. et al. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photon. 2, 1117–1123 (2015).

    Article  Google Scholar 

  41. Grancini, G. et al. Role of microstructure in the electron-hole interaction of hybrid lead halide perovskites. Nature Photon. http://dx.doi.org/10.1038/nphoton.2015.151 (2015).

  42. Armin, A. et al. Balanced carrier mobilities: not a necessary condition for high-efficiency thin organic solar cells as determined by MIS-CELIV. Adv. Energy Mater. 4, 1300954 (2014).

    Article  Google Scholar 

  43. Burkhard, G. F., Hoke, E. T. & McGehee, M. D. Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells. Adv. Mater. 22, 3293–3297 (2010).

    Article  Google Scholar 

  44. Koster, L., Kemerink, M., Wienk, M. M., Maturová, K. & Janssen, R. A. Quantifying bimolecular recombination losses in organic bulk heterojunction solar cells. Adv. Mater. 23, 1670–1674 (2011).

    Article  Google Scholar 

  45. Stolterfoht, M. et al. Photocarrier drift distance in organic solar cells and photodetectors. Sci. Rep. 5, 9949 (2015).

    Article  Google Scholar 

  46. Leijtens, T. et al. Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano 8, 7147–7155 (2014).

    Article  Google Scholar 

  47. Fang, Y. & Huang, J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 27, 2804–2810 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

P.L.B. is a UQ Vice Chancellor's Research Focussed Fellow and P.M. is an ARC Discovery Outstanding Researcher Award Fellow. Q.L. is supported by an International Postgraduate Research Scholarship (IPRS). This work was performed in part at the Queensland node of the Australian National Fabrication Facility (ANFF), a company established under the National Collaborative Research Infrastructure Strategy to provide nano and micro fabrication facilities for Australia's researchers. This Program has also been supported by the Australian Government through the Australian Renewable Energy Agency (ARENA) Australian Centre for Advanced Photovoltaics. Responsibility for the views, information or advice expressed herein is not accepted by the Australian Government.

Author information

Authors and Affiliations

Authors

Contributions

Q.L. characterized the perovskite films and fabricated the devices. Q.L. and A.A. tested the devices and all authors interpreted the data. P.L.B. and P.M. supervised the project. All authors contributed to preparation of the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Paul L. Burn or Paul Meredith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Armin, A., Burn, P. et al. Filterless narrowband visible photodetectors. Nature Photon 9, 687–694 (2015). https://doi.org/10.1038/nphoton.2015.175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing