Experimental quantum key distribution without monitoring signal disturbance


Quantum key distribution (QKD) is a method of realizing private communication securely against an adversary with unlimited power. The QKD protocols proposed and demonstrated over the past 30 years relied on the monitoring of signal disturbance to set an upper limit to the amount of leaked information. Here, we report an experimental realization of the recently proposed round-robin differential-phase-shift protocol. We used a receiver set-up in which photons are randomly routed to one of four interferometers with different delays so that the phase difference is measured uniformly over all pair combinations among five pulses comprising the quantum signal. The amount of leak can be bounded from this randomness alone, and a secure key was extracted even when a finite communication time and the threshold nature of photon detectors were taken into account. This demonstrates the first QKD experiment without signal disturbance monitoring, thus opening up a new direction towards secure communication.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up for RRDPS QKD.
Figure 2
Figure 3: Experimental results.
Figure 4: Results of finite-key security analysis.


  1. 1

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    ADS  Article  Google Scholar 

  2. 2

    Bennett, C. H. & Brassard, G. in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing 175–179 (IEEE Press, 1984).

    Google Scholar 

  3. 3

    Ekert, A. K. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    Bennett, C. H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5

    Huttner, B., Imoto, N., Gisin, N. & Mor, T. Quantum cryptography with coherent states. Phys. Rev. A 51, 1863–1869 (1995).

    ADS  Article  Google Scholar 

  6. 6

    Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P. & Diamanti, E. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nature Photon. 14, 378–381 (2013).

    ADS  Article  Google Scholar 

  7. 7

    Inoue, K., Waks, E. & Yamamoto, Y. Differential phase shift quantum key distribution. Phys. Rev. Lett. 89, 037902 (2002).

    ADS  Article  Google Scholar 

  8. 8

    Scarani, V., Acin, A., Ribordy, G. & Gisin, N. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004).

    ADS  Article  Google Scholar 

  9. 9

    Stucki, D., Brunner, N., Gisin, N., Scarani, V. & Zbinden, H. Fast and simple one-way quantum key distribution. Appl. Phys. Lett. 87, 194108 (2005).

    ADS  Article  Google Scholar 

  10. 10

    Dixon, A. R., Yuan, Z. L., Dynes, J. F., Sharpe, A. W. & Shields, A. J. Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. Opt. Express 16, 18790–18797 (2008).

    ADS  Article  Google Scholar 

  11. 11

    Zhang, Q. et al. Megabits secure key rate quantum key distribution. New J. Phys. 11, 045010 (2009).

    ADS  Article  Google Scholar 

  12. 12

    Dixon, A. R., Yuan, Z. L., Dynes, J. F., Sharpe, A. W. & Shields, A. J. Continuous operation of high bit rate quantum key distribution. Appl. Phys. Lett. 96, 161102 (2010).

    ADS  Article  Google Scholar 

  13. 13

    Tanaka, A. et al. High-speed quantum key distribution system for 1-Mbps real-time key generation. IEEE J. Quantum Electron. 48, 542–550 (2012).

    ADS  Article  Google Scholar 

  14. 14

    Lucamarini, M. et al. Efficient decoy-state quantum key distribution with quantified security. Opt. Express 21, 24550–24565 (2013).

    ADS  Article  Google Scholar 

  15. 15

    Gobby, C., Yuan, Z. L. & Shields, A. J. Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004).

    ADS  Article  Google Scholar 

  16. 16

    Takesue, H. et al. Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors. Nature Photon. 1, 343–348 (2007).

    ADS  Article  Google Scholar 

  17. 17

    Korzh, B. et al. Provably secure and practical quantum key distribution over 307 km of optical fiber. Nature Photon. 9, 163–168 (2015).

    ADS  Article  Google Scholar 

  18. 18

    Peev, M. et al. The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009).

    ADS  Article  Google Scholar 

  19. 19

    Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011).

    ADS  Article  Google Scholar 

  20. 20

    Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Sasaki, T., Yamamoto, Y. & Koashi, M. Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475–478 (2014).

    ADS  Article  Google Scholar 

  22. 22

    Waks, E., Takesue, H. & Yamamoto, Y. Security of differential-phase-shift quantum key distribution against individual attacks. Phys. Rev. A 73, 012344 (2006).

    ADS  Article  Google Scholar 

  23. 23

    Wen, K., Tamaki, K. & Yamamoto, Y. Unconditional security of single-photon differential phase shift quantum key distribution. Phys. Rev. Lett. 103, 170503 (2009).

    ADS  Article  Google Scholar 

  24. 24

    Tamaki, K., Koashi, M. & Kato, G. Unconditional security of coherent-state-based differential phase shift quantum key distribution protocol with block-wise phase randomization. Preprint at http://arxiv.org/abs/1208.1995 (2012).

  25. 25

    Honjo, T., Inoue, K. & Takahashi, H. Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer. Opt. Lett. 29, 2797–2799 (2004).

    ADS  Article  Google Scholar 

  26. 26

    Honjo, T. & Inoue, K. Differential-phase-shift quantum key distribution with an extended degree of freedom. Opt. Lett. 31, 522–524 (2006).

    ADS  Article  Google Scholar 

  27. 27

    Kwack, M. J. et al. Compact optical buffer module for intra-packet synchronization based on InP 1×8 switch and silica-based delay line circuit. IEICE Trans. Electron. E96-C, 738–743 (2013).

    ADS  Article  Google Scholar 

  28. 28

    Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nature Commun. 6, 5873 (2015).

    ADS  Article  Google Scholar 

  29. 29

    Goh, T. et al. Low-loss and high-extinction ratio silica-based strictly nonblocking 16×16 thermooptic matrix switch. IEEE Photon. Technol. Lett. 10, 810–812 (1998).

    ADS  Article  Google Scholar 

  30. 30

    Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    ADS  Article  Google Scholar 

  31. 31

    Yamazaki, H., Yamada, T., Goh, T., Sakamaki, Y. & Kaneko, A. 64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators. IEEE Photon. Technol. Lett. 22, 344–346 (2010).

    ADS  Article  Google Scholar 

  32. 32

    Gottesman, D., Lo, H.-K., Lütkenhaus, N. & Preskill, J. Security of quantum key distribution with imperfect device. Quant. Inf. Comp. 4, 325–360 (2004).

    MathSciNet  MATH  Google Scholar 

Download references


The authors thank Y. Yamamoto, T. Yamada and M. Oguma for discussions. This work was funded in part by the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan) and the Photon Frontier Network Program (MEXT).

Author information




H.T. designed and constructed the experimental set-up and performed the QKD experiments. T.S. and M.K. designed the detailed procedure for secure key generation. H.T., T.S. and K.T. undertook the data analysis. M.K. led the project. All authors discussed the results and wrote the paper.

Corresponding authors

Correspondence to Hiroki Takesue or Toshihiko Sasaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 526 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takesue, H., Sasaki, T., Tamaki, K. et al. Experimental quantum key distribution without monitoring signal disturbance. Nature Photon 9, 827–831 (2015). https://doi.org/10.1038/nphoton.2015.173

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing