Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Perfect absorption in nanotextured thin films via Anderson-localized photon modes

Abstract

The enhancement of light absorption in absorber layers is crucial in a number of applications, including photovoltaics1 and thermoelectrics. The efficient use of natural resources and physical constraints such as limited charge extraction in photovoltaic devices require thin but efficient absorbers. Among the many different strategies used2,3,4,5,6,7, light diffraction8 and light localization9,10 at randomly nanotextured interfaces have been proposed to improve absorption. Although already exploited in commercial devices, the enhancement mechanism for devices with nanotextured interfaces is still subject to debate. Using coherent two-dimensional nanoscopy and coherent light scattering, we demonstrate the existence of localized photonic states in nanotextured amorphous silicon layers as used in commercial thin-film solar cells. Resonant absorption in these states accounts for the enhanced absorption in the long-wavelength cutoff region. Our observations establish that Anderson localization—that is, strong localization—is a highly efficient resonant absorption enhancement mechanism offering interesting opportunities for the design of efficient future absorber layers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Absorption enhancement in nanotextured a-Si:H absorbers.
Figure 2: Coherence properties of backscattered radiation from a-Si:H thin-film solar cells.
Figure 3: Coherent 2D nanoscopy of localized photonic states in nanotextured a-Si:H thin-film solar cells.

Similar content being viewed by others

References

  1. Polman, A. & Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Mater. 11, 174–177 (2012).

    Article  ADS  Google Scholar 

  2. Zhao, J. & Green, M. A. Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Trans. Electron Devices 38, 1925–1934 (1991).

    Article  ADS  Google Scholar 

  3. Ferry, V. E. et al. Light trapping in ultrathin plasmonic solar cells. Opt. Express 18, A237 (2010).

    Article  ADS  Google Scholar 

  4. Lükermann, F., Heinzmann, U. & Stiebig, H. Plasmon enhanced resonant defect absorption in thin a-Si:H n–i–p devices. Appl. Phys. Lett. 100, 253907 (2012).

    Article  ADS  Google Scholar 

  5. Bermel, P., Luo, C., Zeng, L., Kimerling, L. C. & Joannopoulos, J. D. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Opt. Express 15, 16986–17000 (2007).

    Article  ADS  Google Scholar 

  6. Tobías, I., Luque, A. & Martí, A. Light intensity enhancement by diffracting structures in solar cells. J. Appl. Phys. 4, 034502 (2008).

    Article  ADS  Google Scholar 

  7. Cai, M., Painter, O. & Vahala, K. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000).

    Article  ADS  Google Scholar 

  8. Müller, J., Rech, B., Springer, J. & Vanecek, M. TCO and light trapping in silicon thin film solar cells. Sol. Energy 77, 917–930 (2004).

    Article  ADS  Google Scholar 

  9. Riboli, F. et al. Anderson localization of near-visible light in two dimensions. Opt. Lett. 36, 127–129 (2011).

    Article  ADS  Google Scholar 

  10. Vynck, K., Burresi, M., Riboli, F. & Wiersma, D. S. Photon management in two-dimensional disordered media. Nature Mater. 11, 1017–1022 (2012).

    Article  ADS  Google Scholar 

  11. Yablonovitch, E. & Cody, G. D. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Devices 29, 300–305 (1982).

    Article  ADS  Google Scholar 

  12. Yu, Z., Raman, A. & Fan, S. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).

    Article  ADS  Google Scholar 

  13. Basu Mallick, S., Sergeant, N. P., Agrawal, M., Lee, J.-Y. & Peumans, P. Coherent light trapping in thin-film photovoltaics. Mater. Res. Soc. Bull. 36, 453–460 (2011).

    Article  Google Scholar 

  14. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  15. Lagendijk, A., van Tiggelen, B. & Wiersma, D. S. Fifty years of Anderson localization. Phys. Today 62 (8), 24–29 (2009).

    Article  Google Scholar 

  16. Wiersma, D. S. Disordered photonics. Nature Photon. 7, 188–196 (2013).

    Article  ADS  Google Scholar 

  17. Sapienza, L. et al. Cavity quantum electrodynamics with Anderson-localized modes. Science 327, 1352–1355 (2010).

    Article  ADS  Google Scholar 

  18. Hewageegana, P. & Apalkov, V. Second harmonic generation in disordered media: random resonators. Phys. Rev. B 77, 075132 (2008).

    Article  ADS  Google Scholar 

  19. Mascheck, M. et al. Observing the localization of light in space and time by ultrafast second-harmonic microscopy. Nature Photon. 6, 293–298 (2012).

    Article  ADS  Google Scholar 

  20. Aeschlimann, M. et al. Coherent two-dimensional nanoscopy. Science 333, 1723–1726 (2011).

    Article  ADS  Google Scholar 

  21. Schmidt, O. et al. Time-resolved two photon photoemission electron microscopy. Appl. Phys. B 74, 223–227 (2002).

    Article  ADS  Google Scholar 

  22. Tian, P., Keusters, D., Suzaki, Y. & Warren, W. S. Femtosecond phase-coherent two-dimensional spectroscopy. Science 300, 1553–1555 (2003).

    Article  ADS  Google Scholar 

  23. Lipovšek, B., Krč, J., Isabella, O., Zeman, M. & Topič, M. Analysis of thin-film silicon solar cells with white paint back reflectors. Phys. Status Solidi C 7, 1041–1044 (2010).

    Google Scholar 

  24. Lepetit, L., Chériaux, G. & Joffre, M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12, 2467 (1995).

    Article  ADS  Google Scholar 

  25. Farkas, G., Toth, C. & Kohazikis, A. Above-threshold multiphoton photoelectric effect of a gold surface. Opt. Eng. 32, 2476–2480 (1993).

    Article  ADS  Google Scholar 

  26. Merschdorf, M., Pfeiffer, W., Thon, A., Voll, S. & Gerber, G. Photoemission from multiply excited surface plasmons in Ag nanoparticles. Appl. Phys. A 71, 547–552 (2000).

    Article  ADS  Google Scholar 

  27. Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article  Google Scholar 

  28. Sánchez-Gil, J., Freilikher, V., Maradudin, A. & Yurkevich, I. Reflection and transmission of waves in surface-disordered waveguides. Phys. Rev. B 59, 5915–5925 (1999).

    Article  ADS  Google Scholar 

  29. Seal, K. et al. Coexistence of localized and delocalized surface plasmon modes in percolating metal films. Phys. Rev. Lett. 97, 206103 (2006).

    Article  ADS  Google Scholar 

  30. Shah, A. V. et al. Thin-film silicon solar cell technology. Prog. Photovolt. Res. Appl. 12, 113–142 (2004).

    Article  Google Scholar 

  31. Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).

    Article  ADS  Google Scholar 

  32. Weaver, R. L. Anderson localization of ultrasound. Wave Motion 12, 129–142 (1990).

    Article  Google Scholar 

  33. Laurent, D., Legrand, O., Sebbah, P., Vanneste, C. & Mortessagne, F. Localized modes in a finite-size open disordered microwave cavity. Phys. Rev. Lett. 99, 253902 (2007).

    Article  ADS  Google Scholar 

  34. Rockstuhl, C., Lederer, F., Bittkau, K. & Carius, R. Light localization at randomly textured surfaces for solar-cell applications. Appl. Phys. Lett. 91, 171104 (2007).

    Article  ADS  Google Scholar 

  35. Riboli, F. et al. Engineering of light confinement in strongly scattering disordered media. Nature Mater. 13, 720–725 (2014).

    Article  ADS  Google Scholar 

  36. Bliokh, K., Bliokh, Y., Freilikher, V., Savel'ev, S. & Nori, F. Colloquium. Unusual resonators: plasmonics, metamaterials, and random media. Rev. Mod. Phys. 80, 1201–1213 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Malibu GmbH & Co KG for sample preparation and characterization and thank A. Steinbacher for help regarding the measurement and analysis software. This work was supported by the German Science Foundation (DFG) within the SPP 1391 (M.A., T.B. and W.P.), the Federal Ministry for Economic Affairs and Energy within the Globe-Si cooperative project (no. 0325446), the GSC 266 (P.T.) and by the Bavarian Collaborative Research Network ‘Solar Technologies Go Hybrid (SolTech)’ (T.B.).

Author information

Authors and Affiliations

Authors

Contributions

The author list is in alphabetical order. M.A., T.B. and W.P. initiated and supervised the work. H.S. coordinated sample preparation at Malibu GmbH & Co KG. U.H. and H.S. supervised the sample design and characterization performed by F.L. D.D. performed and evaluated the backscattering experiments. M.H., C.K., P.M., M.P., C.Sc., C.St. and P.T. performed the coherent 2D nanoscopy. C.St. and W.P. developed the data analysis procedure for evaluating the 2D spectra based on the thermionic emission model. All authors contributed to manuscript preparation.

Corresponding author

Correspondence to Walter Pfeiffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3884 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aeschlimann, M., Brixner, T., Differt, D. et al. Perfect absorption in nanotextured thin films via Anderson-localized photon modes. Nature Photon 9, 663–668 (2015). https://doi.org/10.1038/nphoton.2015.159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing