Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination

Abstract

Organolead trihalide perovskite is an emerging low-cost, solution-processable material with a tunable bandgap from the violet to near-infrared, which has attracted a great deal of interest for applications in high-performance optoelectronic devices. Here, we present hybrid perovskite single-crystal photodetectors that have a very narrow spectral response with a full-width at half-maximum of <20 nm. The response spectra are continuously tuned from blue to red by changing the halide composition and thus the bandgap of the single crystals synthesized by solution processes. The narrowband photodetection can be explained by the strong surface-charge recombination of the excess carriers close to the crystal surfaces generated by short-wavelength light. The excess carriers generated by below-bandgap excitation locate away from the surfaces and can be much more efficiently collected by the electrodes, assisted by the applied electric field. This provides a new design paradigm for a narrowband photodetector with broad applications where background noise emission needs to be suppressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of hybrid perovskite single crystals.
Figure 2: Device structure and narrowband photodetection.
Figure 3: Narrowband photodetection model and mechanism study.
Figure 4: Device performance of narrowband photodetectors.

Similar content being viewed by others

References

  1. Dandin, M., Abshire, P. & Smela, E. Optical filtering technologies for integrated fluorescence sensors. Lab Chip 7, 955–977 (2007).

    Article  Google Scholar 

  2. Higashi, Y., Kim, K.-S., Jeon, H.-G. & Ichikawa, M. Enhancing spectral contrast in organic red-light photodetectors based on a light-absorbing and exciton-blocking layered system. J. Appl. Phys. 108, 034502 (2010).

    Article  ADS  Google Scholar 

  3. Cicek, E., McClintock, R., Cho, C. Y., Rahnema, B. & Razeghi, M. AlxGa1–xN-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89%. Appl. Phys. Lett. 103, 191108 (2013).

    Article  ADS  Google Scholar 

  4. Sobhani, A. et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nature Commun. 4, 1643 (2013).

    Article  ADS  Google Scholar 

  5. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotech. 7, 363–368 (2012).

    Article  ADS  Google Scholar 

  6. Kim, D.-H. et al. A high performance semitransparent organic photodetector with green color selectivity. Appl. Phys. Lett. 105, 213301 (2014).

    Article  ADS  Google Scholar 

  7. Ren, P. et al. Band-selective infrared photodetectors with complete-composition-range InAsxP1–x alloy nanowires. Adv. Mater. 26, 7444–7449 (2014).

    Article  Google Scholar 

  8. Dong, R. et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 27, 1912–1918 (2015).

    Article  Google Scholar 

  9. Xiao, Z. et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7, 2619–2623 (2014).

    Article  Google Scholar 

  10. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  ADS  Google Scholar 

  11. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  ADS  Google Scholar 

  12. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  ADS  Google Scholar 

  13. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotech. 9, 687–692 (2014).

    Article  ADS  Google Scholar 

  14. Mei, A. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).

    Article  ADS  Google Scholar 

  15. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  ADS  Google Scholar 

  16. Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345, 1593–1596 (2014).

    Article  ADS  Google Scholar 

  17. Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M. & Park, N.-G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotech. 9, 927–932 (2014).

    Article  ADS  Google Scholar 

  18. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Mater. 13, 476–480 (2014).

    Article  ADS  Google Scholar 

  19. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Mater. 13, 897–903 (2014).

    Article  ADS  Google Scholar 

  20. Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Mater. 14, 636–642 (2015).

    Article  ADS  Google Scholar 

  21. Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photon. 7, 486–491 (2013).

    Article  ADS  Google Scholar 

  22. Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photon. 8, 133–138 (2014).

    Article  ADS  Google Scholar 

  23. Malinkiewicz, O. et al. Perovskite solar cells employing organic charge-transport layers. Nature Photon. 8, 128–132 (2014).

    Article  ADS  Google Scholar 

  24. Marchioro, A. et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature Photon. 8, 250–255 (2014).

    Article  ADS  Google Scholar 

  25. Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nature Photon. 9, 106–112 (2015).

    Article  ADS  Google Scholar 

  26. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  Google Scholar 

  27. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    Article  ADS  Google Scholar 

  28. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  ADS  Google Scholar 

  29. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nature Photon. 8, 506–514 (2014).

    Article  ADS  Google Scholar 

  30. Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Commun. 5, 5784 (2014).

  31. Wang, Q. et al. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci. 7, 2359–2365 (2014).

    Article  Google Scholar 

  32. Dong, Q. et al. Electron–hole diffusion lengths &gt;175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  ADS  Google Scholar 

  33. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  ADS  Google Scholar 

  34. Knop, O., Wasylishen, R. E., White, M. A., Cameron, T. S. & Oort, M. J. M. V. Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X=Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Can. J. Chem. 68, 412–422 (1990).

    Article  Google Scholar 

  35. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).

    Article  ADS  Google Scholar 

  36. Fang, Y. & Huang, J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 27, 2804–2810 (2015).

    Article  Google Scholar 

  37. Armin, A., Jansen-van Vuuren, R. D., Kopidakis, N., Burn, P. L. & Meredith, P. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nature Commun. 6, 6343 (2015).

    Article  ADS  Google Scholar 

  38. Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature Mater. 14, 193–198 (2014).

    Article  ADS  Google Scholar 

  39. Olschner, F., Toledo-Quinones, M., Shah, K. S. & Lund, J. C. Charge carrier transport properties in thallium bromide crystals used as radiation detectors. IEEE. Trans. Nucl. Sci. 37, 1162–1164 (1990).

    Article  ADS  Google Scholar 

  40. Androulakis, J. et al. Dimensional reduction: a design tool for new radiation detection materials. Adv. Mater. 23, 4163–4167 (2011).

    Article  Google Scholar 

  41. Schmidt, J. et al. Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3 . Prog. Photovolt. Res. Appl. 16, 461–466 (2008).

    Article  Google Scholar 

  42. Liu, J.-M. Photonic Devices (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  43. Guo, F. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nature Nanotech. 7, 798–802 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Threat Reduction Agency (award no. HDTRA1-14-1-0030) and the Office of Naval Research (ONR, award no. N000141210556).

Author information

Authors and Affiliations

Authors

Contributions

J.H. conceived the idea. J.H. and Y.F. designed the experiments. Y.F. carried out the material synthesis, device fabrication and characterization with the assistance of Q.D. and Y.Y. Y.F. and Y.S. performed the device modelling. J.H. and Y.F. wrote the manuscript.

Corresponding author

Correspondence to Jinsong Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 782 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Dong, Q., Shao, Y. et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photon 9, 679–686 (2015). https://doi.org/10.1038/nphoton.2015.156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing