Review Article | Published:

Advances in quantum teleportation

Nature Photonics volume 9, pages 641652 (2015) | Download Citation

Abstract

Quantum teleportation is one of the most important protocols in quantum information. By exploiting the physical resource of entanglement, quantum teleportation serves as a key primitive across a variety of quantum information tasks and represents an important building block for quantum technologies, with a pivotal role in the continuing progress of quantum communication, quantum computing and quantum networks. Here we summarize the basic theoretical ideas behind quantum teleportation and its variant protocols. We focus on the main experiments, together with the technical advantages and disadvantages associated with the use of the various technologies, from photonic qubits and optical modes to atomic ensembles, trapped atoms and solid-state systems. After analysing the current state-of-the-art, we finish by discussing open issues, challenges and potential future implementations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Lo! (Claude Kendall, 1931).

  2. 2.

    et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

  3. 3.

    , , & Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).

  4. 4.

    & Introduction to the basics of entanglement theory in continuous-variable systems. Int. J. Quant. Inf. 1, 479–506 (2003).

  5. 5.

    & Quantum Computation and Quantum Information (Cambridge Univ., 2000).

  6. 6.

    Quantum Information Theory (Cambridge Univ. Press, 2013).

  7. 7.

    et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

  8. 8.

    & Quantum information theory with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

  9. 9.

    , , & Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

  10. 10.

    & Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

  11. 11.

    & A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

  12. 12.

    & Asymptotic teleportation scheme as a universal programmable quantum processor. Phys. Rev. Lett. 101, 240501 (2008).

  13. 13.

    The quantum internet. Nature 453, 1023–1030 (2008).

  14. 14.

    et al. Closed timelike curves via post-selection: theory and experimental demonstration. Phys. Rev. Lett. 106, 040403 (2011).

  15. 15.

    et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

  16. 16.

    et al. Quantum teleportation across the Danube. Nature 430, 849 (2004).

  17. 17.

    , , , & Experimental realisation of teleporting an unknown pure quantum state via dual classical and Einstein–Podolski–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

  18. 18.

    et al. Experimental free-space quantum teleportation. Nature Photon. 4, 376–381 (2010).

  19. 19.

    , & Quantum teleportation of a polarisation state with complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001).

  20. 20.

    et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012).

  21. 21.

    et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).

  22. 22.

    , , & Teleportation of a vacuum-one-photon qubit. Phys. Rev. Lett. 88, 070402 (2002).

  23. 23.

    , , & Active teleportation of a quantum bit. Phys. Rev. A 66, 030302 (2002).

  24. 24.

    , , & Quantum teleportation with a quantum dot single photon source. Phys. Rev. Lett. 92, 037904 (2004).

  25. 25.

    et al. Quantum teleportation on a photonic chip. Nature Photon. 8, 770–774 (2014).

  26. 26.

    , , , & Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003).

  27. 27.

    et al. Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904 (2004).

  28. 28.

    et al. Quantum teleportation over the Swisscom telecommunication network. J. Opt. Soc. Am. B 24, 398–403 (2007).

  29. 29.

    et al. Quantum teleportation of multiple degrees of freedom in a single photon. Nature 518, 516–519 (2015).

  30. 30.

    , & Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52–55 (1998).

  31. 31.

    et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

  32. 32.

    et al. Experimental investigation of continuous-variable quantum teleportation. Phys. Rev. A 67, 032302 (2003).

  33. 33.

    , , , & Quantum teleportation of light beams. Phys. Rev. A 67, 033802 (2003).

  34. 34.

    , , & High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys. Rev. Lett. 94, 220502 (2005).

  35. 35.

    , & Experimental demonstration of quantum teleportation of broadband squeezing. Phys. Rev. Lett. 99, 110503 (2007).

  36. 36.

    et al. Experimental demonstration of quantum teleportation of a squeezed state. Phys. Rev. A 72, 042304 (2005).

  37. 37.

    et al. Teleportation of nonclassical wave packets of light. Science 332, 330–333 (2011).

  38. 38.

    , & High-fidelity continuous-variable quantum teleportation toward multistep quantum operations. Phys. Rev. A 77, 022314 (2008).

  39. 39.

    , , , & Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature 500, 315–318 (2013).

  40. 40.

    et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

  41. 41.

    et al. Deterministic quantum teleportation between distant atomic objects. Nature Phys. 9, 400–404 (2013).

  42. 42.

    et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2008).

  43. 43.

    et al. Quantum teleportation between remote atomic-ensemble quantum memories. Proc. Natl Acad. Sci. USA 109, 20347–20351 (2012).

  44. 44.

    et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

  45. 45.

    et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

  46. 46.

    et al. Quantum teleportation with atoms: Quantum process tomography. New J. Phys. 9, 211 (2007).

  47. 47.

    et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009).

  48. 48.

    et al. Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 110, 140403 (2013).

  49. 49.

    et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nature Commun. 4, 2744 (2013).

  50. 50.

    et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nature Photon. 8, 775–778 (2014).

  51. 51.

    et al. Deterministic quantum teleportation with feed-forward in a solid state system. Nature 500, 319–322 (2013).

  52. 52.

    et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

  53. 53.

    Experimental Bell-state analysis. Europhys. Lett. 25, 559–564 (1994).

  54. 54.

    & Measurement of the Bell operator and quantum teleportation. Phys. Rev. A 51, R1727–R1730 (1995).

  55. 55.

    & Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 67–71 (2001).

  56. 56.

    et al. Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001).

  57. 57.

    , , & Quantum cloning. Rev. Mod. Phys. 77, 1225–1256 (2005).

  58. 58.

    & Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).

  59. 59.

    All teleportation and dense coding schemes. J. Phys. A 34, 7081–7094 (2001).

  60. 60.

    Teleportation of quantum states. Phys. Rev. A 49, 1473–1476 (1994).

  61. 61.

    & Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998).

  62. 62.

    , , & Continuous variable entanglement and quantum state teleportation between optical and macroscopic vibrational modes through radiation pressure. Phys. Rev. A 68, 062317 (2003).

  63. 63.

    Entanglement in quantum information theory. PhD thesis, Potsdam University (2001).

  64. 64.

    & Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).

  65. 65.

    Logarithmic negativity: A full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005).

  66. 66.

    & Quantum Optics (Springer, 1994).

  67. 67.

    , , & Quantum versus classical domains for teleportation with continuous variables. Phys. Rev. A 64, 022321 (2001).

  68. 68.

    , , & Quantum benchmark for storage and transmission of coherent states. Phys. Rev. Lett. 94, 150503 (2005).

  69. 69.

    & Quantum cloning and teleportation criteria for continuous quantum variables. Phys. Rev. A 64, 010301(R) (2001).

  70. 70.

    & Quantum teleportation with continuous variables: A survey. Laser Phys. 16, 1418–1438 (2006).

  71. 71.

    , , & Quantum benchmark for storage and transmission of coherent states. Phys. Rev. Lett. 94, 150503 (2005).

  72. 72.

    , , , & Squeezing the limit: Quantum benchmarks for the teleportation and storage of squeezed states. New J. Phys. 10, 113014 (2008).

  73. 73.

    , , & Phase-covariant quantum benchmarks. Phys. Rev. A 79, 050301(R) (2009).

  74. 74.

    & Quantum benchmarks for pure single-mode Gaussian states. Phys. Rev. Lett. 112, 010501 (2014).

  75. 75.

    , & Broadband teleportation. Phys. Rev. A 62, 022309 (2000).

  76. 76.

    , , & “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

  77. 77.

    , , & Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

  78. 78.

    & Unconditional teleportation of continuous-variable entanglement. Phys. Rev. A 61, 010302(R) (1999).

  79. 79.

    & Continuous variable entanglement swapping. Phys. Rev. Lett. 83, 2095–2099 (1999).

  80. 80.

    , , & Macroscopic entanglement by entanglement swapping. Phys. Rev. Lett. 97, 150403 (2006).

  81. 81.

    , , & Entanglement swapping with local certification: Application to remote micromechanical resonators. Phys. Rev. Lett. 109, 143601 (2012).

  82. 82.

    et al. Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys. Rev. Lett. 93, 250503 (2004).

  83. 83.

    , , & Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114, 100501 (2015).

  84. 84.

    et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

  85. 85.

    , , & Distillation of continuous-variable entanglement with optical means. Ann. Phys. 311, 431–458 (2004).

  86. 86.

    & Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).

  87. 87.

    et al. High-rate measurement-device-independent quantum cryptography. Nature Photon. 9, 397–402 (2015).

  88. 88.

    & Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998).

  89. 89.

    , & Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999).

  90. 90.

    & Multipartite entanglement for continuous variables: A quantum teleportation network. Phys. Rev. Lett. 84, 3482–3485 (2000).

  91. 91.

    , & Demonstration of a quantum teleportation network for continuous variables. Nature 431, 430–433 (2004).

  92. 92.

    , , , & Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004).

  93. 93.

    & Quantum copying: Beyond the no-cloning theorem. Phys. Rev. A 54, 1844–1852 (1996).

  94. 94.

    et al. Optimal universal and state-dependent quantum cloning. Phys. Rev. A 57, 2368–2378 (1998).

  95. 95.

    , & Cloning of continuous quantum variables. Phys. Rev. Lett. 85, 1754–1757 (2000).

  96. 96.

    et al. Experimental realisation of optimal asymmetric cloning and telecloning via partial teleportation. Phys. Rev. Lett. 95, 030502 (2005).

  97. 97.

    et al. Demonstration of quantum telecloning of optical coherent states. Phys. Rev. Lett. 96, 060504 (2006).

  98. 98.

    , , & Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999).

  99. 99.

    & Telecloning of continuous quantum variables. Phys. Rev. Lett. 87, 247901 (2001).

  100. 100.

    , & Teleportation as a quantum computation. Physica D 120, 43–47 (1998).

  101. 101.

    & Computation by measurements: A unifying picture. Phys. Rev. Lett. 70, 062314 (2004).

  102. 102.

    , & A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

  103. 103.

    et al. Teleportation-based realisation of an optical quantum two-qubit entangling gate. Proc. Natl Acad. Sci. USA 107, 20869–20874 (2010).

  104. 104.

    & Novel schemes for measurement-based quantum computing. Phys. Rev. Lett. 98, 220503 (2007).

  105. 105.

    Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).

  106. 106.

    et al. Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006).

  107. 107.

    & Continuous-variable Gaussian analog of cluster states. Phys. Rev. A 73, 032318 (2006).

  108. 108.

    et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nature Photon. 7, 982–986 (2013).

  109. 109.

    & Quantum teleportation scheme by selecting one of multiple output ports. Phys. Rev. A 79, 042306 (2009).

  110. 110.

    , & Generalised teleportation and entanglement recycling. Phys. Rev. Lett. 110, 010505 (2013).

  111. 111.

    & Simplified instantaneous non-local quantum computation with applications to position-based cryptography. New J. Phys. 13, 093036 (2011).

  112. 112.

    et al. Quantum communication complexity advantage implies violation of a Bell inequality. Preprint at (2015).

  113. 113.

    Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A 84, 042331 (2011).

  114. 114.

    & Beating the one-half limit of ancilla-free linear optics Bell measurements. Phys. Rev. Lett. 110, 260501 (2013).

  115. 115.

    & 3/4-efficient Bell measurement with passive linear optics and unentangled ancillae. Phys. Rev. Lett. 113, 140403 (2014).

  116. 116.

    & A posteriori teleportation. Nature 394, 840–841 (1998).

  117. 117.

    , , , & Experimental realization of freely propagating teleported qubits. Nature 421, 721–725 (2003).

  118. 118.

    & Quantum teleportation and Bell's inequality using single-particle entanglement. Phys. Rev. A 63, 012305 (2000).

  119. 119.

    , , & Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999).

  120. 120.

    , , & Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992).

  121. 121.

    , & Narrow-band frequency tunable light source of continuous quadrature entanglement. Phys. Rev. A 66, 033802 (2002).

  122. 122.

    & Quantum Teleportation and Entanglement — A Hybrid Approach to Optical Quantum Information Processing (Wiley, 2011).

  123. 123.

    & High-fidelity teleportation of continuous-variable quantum states using delocalised single photons. Phys. Rev. Lett. 111, 050504 (2013).

  124. 124.

    et al. Quantum memories. Eur. Phys. J. D 58, 1–22 (2010).

  125. 125.

    et al. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).

  126. 126.

    et al. A quantum memory with telecom-wavelength conversion. Nature Phys. 6, 894–899 (2010).

  127. 127.

    et al. Modular entanglement of atomic qubits using photons and phonons. Nature Phys. 11, 37–42 (2015).

  128. 128.

    et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

  129. 129.

    & Wiring up quantum systems. Nature 451, 664–669 (2008).

  130. 130.

    et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

  131. 131.

    , , & Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013).

  132. 132.

    et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).

  133. 133.

    , , , & Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. Phys. Rev. Lett. 113, 063603 (2014).

  134. 134.

    , , & Universal teleportation with a twist. Phys. Rev. Lett. 84, 3486–3489 (2000).

  135. 135.

    et al. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett. 113, 220501 (2014).

  136. 136.

    et al. A single-atom quantum memory. Nature 473, 190–193 (2011).

  137. 137.

    et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

  138. 138.

    et al. Coherent spin control at the quantum level in an ensemble-based optical memory. Phys. Rev. Lett. 114, 230502 (2015).

  139. 139.

    et al. A quantum memory with near-millisecond coherence in circuit QED. Preprint at (2015).

  140. 140.

    , , , & Solid-state electronic spin coherence time approaching one second. Nature Commun. 4, 1743 (2013).

Download references

Acknowledgements

S.P. was supported by the Leverhulme Trust (qBIO) and the EPSRC, via qDATA (Grant No. EP/L011298/1) and the UK Quantum Communications Hub (Grant No. EP/M013472/1). J.E. was supported by BMBF (Q.com), the EU (SIQS, RAQUEL, AQuS) and the ERC (TAQ). The authors would like to acknowledge useful feedback from U. L. Andersen, G. Chiribella, N. Gisin, A. İmamoğlu, C.-Y. Lu, P. van Loock, S. Mancini, C. Monroe, S. Olmschenk, J. W. Pan, W. Pfaff, E. Polzik, S. Popescu, T. C. Ralph, V. Scarani, F. Sciarrino, C. Simon, R. Thew, W. Tittel, A. Wallraff and D. J. Wineland.

Author information

Affiliations

  1. Computer Science and York Centre for Quantum Technologies, University of York, York YO10 5GH, United Kingdom

    • S. Pirandola
    •  & S. L. Braunstein
  2. Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany

    • J. Eisert
  3. Department of Physics, University of Toronto, Toronto M5S 3G4, Canada

    • C. Weedbrook
  4. Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

    • A. Furusawa

Authors

  1. Search for S. Pirandola in:

  2. Search for J. Eisert in:

  3. Search for C. Weedbrook in:

  4. Search for A. Furusawa in:

  5. Search for S. L. Braunstein in:

Contributions

All authors contributed to selecting the literature, critical discussions and checking the manuscript for accuracy. S.P. reviewed the selected literature, and wrote the majority of the manuscript. J.E. and S.L.B. contributed to the writing/editing of the theory sections.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to S. Pirandola.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2015.154

Further reading