Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in quantum teleportation

Abstract

Quantum teleportation is one of the most important protocols in quantum information. By exploiting the physical resource of entanglement, quantum teleportation serves as a key primitive across a variety of quantum information tasks and represents an important building block for quantum technologies, with a pivotal role in the continuing progress of quantum communication, quantum computing and quantum networks. Here we summarize the basic theoretical ideas behind quantum teleportation and its variant protocols. We focus on the main experiments, together with the technical advantages and disadvantages associated with the use of the various technologies, from photonic qubits and optical modes to atomic ensembles, trapped atoms and solid-state systems. After analysing the current state-of-the-art, we finish by discussing open issues, challenges and potential future implementations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theory of quantum teleportation.
Figure 2: Long-distance quantum teleportation with polarization qubits.
Figure 3: Quantum teleportation with optical modes.
Figure 4: Quantum teleportation with matter.
Figure 5: Quantum teleportation with solid-state systems.

Similar content being viewed by others

References

  1. Fort, C. H. Lo! (Claude Kendall, 1931).

    Google Scholar 

  2. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Eisert, J. & Plenio, M. B. Introduction to the basics of entanglement theory in continuous-variable systems. Int. J. Quant. Inf. 1, 479–506 (2003).

    Article  MATH  Google Scholar 

  5. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ., 2000).

    MATH  Google Scholar 

  6. Wilde, M. M. Quantum Information Theory (Cambridge Univ. Press, 2013).

    Book  MATH  Google Scholar 

  7. Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

    Article  ADS  Google Scholar 

  8. Braunstein, S. L. & van Loock, P. Quantum information theory with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    Article  ADS  MATH  Google Scholar 

  9. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  10. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    Article  ADS  Google Scholar 

  11. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  12. Ishizaka, S. & Hiroshima, T. Asymptotic teleportation scheme as a universal programmable quantum processor. Phys. Rev. Lett. 101, 240501 (2008).

    Article  ADS  Google Scholar 

  13. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  14. Lloyd, S. et al. Closed timelike curves via post-selection: theory and experimental demonstration. Phys. Rev. Lett. 106, 040403 (2011).

    Article  ADS  Google Scholar 

  15. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  MATH  Google Scholar 

  16. Ursin, R. et al. Quantum teleportation across the Danube. Nature 430, 849 (2004).

    Article  ADS  Google Scholar 

  17. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realisation of teleporting an unknown pure quantum state via dual classical and Einstein–Podolski–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jin, X.-M. et al. Experimental free-space quantum teleportation. Nature Photon. 4, 376–381 (2010).

    Article  ADS  Google Scholar 

  19. Kim, Y.-H., Kulik, S. P. & Shih, Y. Quantum teleportation of a polarisation state with complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001).

    Article  ADS  Google Scholar 

  20. Yin, J. et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012).

    Article  ADS  Google Scholar 

  21. Ma, X.-S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).

    Article  ADS  Google Scholar 

  22. Lombardi, E., Sciarrino, F., Popescu, S. & De Martini, F. Teleportation of a vacuum-one-photon qubit. Phys. Rev. Lett. 88, 070402 (2002).

    Article  ADS  Google Scholar 

  23. Giacomini, S., Sciarrino, F., Lombardi, E. & De Martini, F. Active teleportation of a quantum bit. Phys. Rev. A 66, 030302 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  24. Fattal, D., Diamanti, E., Inoue, K. & Yamamoto, Y. Quantum teleportation with a quantum dot single photon source. Phys. Rev. Lett. 92, 037904 (2004).

    Article  ADS  Google Scholar 

  25. Metcalf, B. J. et al. Quantum teleportation on a photonic chip. Nature Photon. 8, 770–774 (2014).

    Article  ADS  Google Scholar 

  26. Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003).

    Article  ADS  Google Scholar 

  27. de Riedmatten, H. et al. Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904 (2004).

    Article  ADS  Google Scholar 

  28. Landry, O. et al. Quantum teleportation over the Swisscom telecommunication network. J. Opt. Soc. Am. B 24, 398–403 (2007).

    Article  ADS  Google Scholar 

  29. Wang, X.-L. et al. Quantum teleportation of multiple degrees of freedom in a single photon. Nature 518, 516–519 (2015).

    Article  ADS  Google Scholar 

  30. Nielsen, M. A., Knill, E. & Laflamme, R. Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52–55 (1998).

    Article  ADS  Google Scholar 

  31. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article  ADS  Google Scholar 

  32. Bowen, W. P. et al. Experimental investigation of continuous-variable quantum teleportation. Phys. Rev. A 67, 032302 (2003).

    Article  ADS  Google Scholar 

  33. Zhang, T. C., Goh, K. W., Chou, C. W., Lodahl, P. & Kimble, H. J. Quantum teleportation of light beams. Phys. Rev. A 67, 033802 (2003).

    Article  ADS  Google Scholar 

  34. Takei, N., Yonezawa, H., Aoki, T. & Furusawa, A. High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys. Rev. Lett. 94, 220502 (2005).

    Article  ADS  Google Scholar 

  35. Yonezawa, H., Braunstein, S. L. & Furusawa, A. Experimental demonstration of quantum teleportation of broadband squeezing. Phys. Rev. Lett. 99, 110503 (2007).

    Article  ADS  Google Scholar 

  36. Takei, N. et al. Experimental demonstration of quantum teleportation of a squeezed state. Phys. Rev. A 72, 042304 (2005).

    Article  ADS  Google Scholar 

  37. Lee, N. et al. Teleportation of nonclassical wave packets of light. Science 332, 330–333 (2011).

    Article  ADS  Google Scholar 

  38. Yukawa, M., Benichi, H. & Furusawa, A. High-fidelity continuous-variable quantum teleportation toward multistep quantum operations. Phys. Rev. A 77, 022314 (2008).

    Article  ADS  Google Scholar 

  39. Takeda, S., Mizuta, T., Fuwa, M., van Loock, P. & Furusawa, A. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature 500, 315–318 (2013).

    Article  ADS  Google Scholar 

  40. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article  ADS  Google Scholar 

  41. Krauter, H. et al. Deterministic quantum teleportation between distant atomic objects. Nature Phys. 9, 400–404 (2013).

    Article  ADS  Google Scholar 

  42. Chen, Y.-A. et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2008).

    Article  ADS  Google Scholar 

  43. Bao, X.-H. et al. Quantum teleportation between remote atomic-ensemble quantum memories. Proc. Natl Acad. Sci. USA 109, 20347–20351 (2012).

    Article  ADS  Google Scholar 

  44. Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    Article  ADS  Google Scholar 

  45. Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

    Article  ADS  Google Scholar 

  46. Riebe, M. et al. Quantum teleportation with atoms: Quantum process tomography. New J. Phys. 9, 211 (2007).

    Article  ADS  Google Scholar 

  47. Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009).

    Article  ADS  Google Scholar 

  48. Nölleke, C. et al. Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 110, 140403 (2013).

    Article  ADS  Google Scholar 

  49. Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nature Commun. 4, 2744 (2013).

    Article  ADS  Google Scholar 

  50. Bussières, F. et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nature Photon. 8, 775–778 (2014).

    Article  ADS  Google Scholar 

  51. Steffen, L. et al. Deterministic quantum teleportation with feed-forward in a solid state system. Nature 500, 319–322 (2013).

    Article  ADS  Google Scholar 

  52. Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Weinfurter, H. Experimental Bell-state analysis. Europhys. Lett. 25, 559–564 (1994).

    Article  ADS  Google Scholar 

  54. Braunstein, S. L. & Mann, A. Measurement of the Bell operator and quantum teleportation. Phys. Rev. A 51, R1727–R1730 (1995).

    Article  ADS  Google Scholar 

  55. Calsamiglia, J. & Lütkenhaus, N. Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 67–71 (2001).

    Article  ADS  Google Scholar 

  56. Bennett, C. H. et al. Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001).

    Article  ADS  Google Scholar 

  57. Scarani, V., Iblisdir, S., Gisin, N. & Acn, A. Quantum cloning. Rev. Mod. Phys. 77, 1225–1256 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Werner, R. F. All teleportation and dense coding schemes. J. Phys. A 34, 7081–7094 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Vaidman, L. Teleportation of quantum states. Phys. Rev. A 49, 1473–1476 (1994).

    Article  ADS  Google Scholar 

  61. Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998).

    Article  ADS  Google Scholar 

  62. Pirandola, S., Mancini, S., Vitali, D. & Tombesi, P. Continuous variable entanglement and quantum state teleportation between optical and macroscopic vibrational modes through radiation pressure. Phys. Rev. A 68, 062317 (2003).

    Article  ADS  Google Scholar 

  63. Eisert, J. Entanglement in quantum information theory. PhD thesis, Potsdam University (2001).

    Google Scholar 

  64. Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).

    Article  ADS  Google Scholar 

  65. Plenio, M. B. Logarithmic negativity: A full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005).

    Article  ADS  Google Scholar 

  66. Walls, D. F. & Milburn, G. J. Quantum Optics (Springer, 1994).

    Book  MATH  Google Scholar 

  67. Braunstein, S. L., Fuchs, C. A., Kimble, H. J. & van Loock, P. Quantum versus classical domains for teleportation with continuous variables. Phys. Rev. A 64, 022321 (2001).

    Article  ADS  Google Scholar 

  68. Hammerer, K., Wolf, M. M., Polzik, E. S. & Cirac, J. I. Quantum benchmark for storage and transmission of coherent states. Phys. Rev. Lett. 94, 150503 (2005).

    Article  ADS  Google Scholar 

  69. Grosshans, F. & Grangier, P. Quantum cloning and teleportation criteria for continuous quantum variables. Phys. Rev. A 64, 010301(R) (2001).

    Article  ADS  MathSciNet  Google Scholar 

  70. Pirandola, S. & Mancini, S. Quantum teleportation with continuous variables: A survey. Laser Phys. 16, 1418–1438 (2006).

    Article  ADS  Google Scholar 

  71. Hammerer, K., Wolf, M. M., Polzik, E. S. & Cirac, J. I. Quantum benchmark for storage and transmission of coherent states. Phys. Rev. Lett. 94, 150503 (2005).

    Article  ADS  Google Scholar 

  72. Owari, M., Plenio, M. B., Polzik, E. S., Serafini, A. & Wolf, M. M. Squeezing the limit: Quantum benchmarks for the teleportation and storage of squeezed states. New J. Phys. 10, 113014 (2008).

    Article  ADS  Google Scholar 

  73. Calsamiglia, J., Aspachs, M., Munoz Tapia, R. & Bagan, E. Phase-covariant quantum benchmarks. Phys. Rev. A 79, 050301(R) (2009).

    Article  ADS  MathSciNet  Google Scholar 

  74. Chiribella, G. & Adesso, G. Quantum benchmarks for pure single-mode Gaussian states. Phys. Rev. Lett. 112, 010501 (2014).

    Article  ADS  Google Scholar 

  75. van Loock, P., Braunstein, S. L. & Kimble, H. J. Broadband teleportation. Phys. Rev. A 62, 022309 (2000).

    Article  ADS  Google Scholar 

  76. Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    Article  ADS  Google Scholar 

  77. Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. van Loock, P. & Braunstein, S. L. Unconditional teleportation of continuous-variable entanglement. Phys. Rev. A 61, 010302(R) (1999).

    Article  MathSciNet  Google Scholar 

  79. Polkinghorne, R. E. S. & Ralph, T. C. Continuous variable entanglement swapping. Phys. Rev. Lett. 83, 2095–2099 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Pirandola, S., Vitali, D., Tombesi, P. & Lloyd, S. Macroscopic entanglement by entanglement swapping. Phys. Rev. Lett. 97, 150403 (2006).

    Article  ADS  Google Scholar 

  81. Abdi, M., Pirandola, S., Tombesi, P. & Vitali, D. Entanglement swapping with local certification: Application to remote micromechanical resonators. Phys. Rev. Lett. 109, 143601 (2012).

    Article  ADS  Google Scholar 

  82. Jia, X. et al. Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys. Rev. Lett. 93, 250503 (2004).

    Article  ADS  Google Scholar 

  83. Takeda, S., Fuwa, M., van Loock, P. & Furusawa, A. Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114, 100501 (2015).

    Article  ADS  Google Scholar 

  84. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    Article  ADS  Google Scholar 

  85. Eisert, J., Browne, D. E., Scheel, S. & Plenio, M. B. Distillation of continuous-variable entanglement with optical means. Ann. Phys. 311, 431–458 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Braunstein, S. L. & Pirandola, S. Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).

    Article  ADS  Google Scholar 

  87. Pirandola, S. et al. High-rate measurement-device-independent quantum cryptography. Nature Photon. 9, 397–402 (2015).

    Article  ADS  Google Scholar 

  88. Karlsson, A. & Bourennane, M. Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  89. Hillery, M., Buzek, V. & Berthiaume, A. Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. van Loock, P. & Braunstein, S. L. Multipartite entanglement for continuous variables: A quantum teleportation network. Phys. Rev. Lett. 84, 3482–3485 (2000).

    Article  ADS  Google Scholar 

  91. Yonezawa, H., Aoki, T. & Furusawa, A. Demonstration of a quantum teleportation network for continuous variables. Nature 431, 430–433 (2004).

    Article  ADS  Google Scholar 

  92. Lance, A. M., Symul, T., Bowen, W. P., Sanders, B. C. & Lam, P. K. Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004).

    Article  ADS  Google Scholar 

  93. Bužek, V. & Hillery, M. Quantum copying: Beyond the no-cloning theorem. Phys. Rev. A 54, 1844–1852 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  94. Bruß, D. et al. Optimal universal and state-dependent quantum cloning. Phys. Rev. A 57, 2368–2378 (1998).

    Article  ADS  Google Scholar 

  95. Cerf, N. J., Ipe, A. & Rottenberg, X. Cloning of continuous quantum variables. Phys. Rev. Lett. 85, 1754–1757 (2000).

    Article  ADS  Google Scholar 

  96. Zhao, Z. et al. Experimental realisation of optimal asymmetric cloning and telecloning via partial teleportation. Phys. Rev. Lett. 95, 030502 (2005).

    Article  ADS  Google Scholar 

  97. Koike, S. et al. Demonstration of quantum telecloning of optical coherent states. Phys. Rev. Lett. 96, 060504 (2006).

    Article  ADS  Google Scholar 

  98. Murao, M., Jonathan, D., Plenio, M. B. & Vedral, V. Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999).

    Article  ADS  Google Scholar 

  99. van Loock, P. & Braunstein, S. L. Telecloning of continuous quantum variables. Phys. Rev. Lett. 87, 247901 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  100. Brassard, G., Braunstein, S. L. & Cleve, R. Teleportation as a quantum computation. Physica D 120, 43–47 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. Aliferis, P. & Leung, D. W. Computation by measurements: A unifying picture. Phys. Rev. Lett. 70, 062314 (2004).

    Google Scholar 

  102. Knill, E., Laflamme, R. & Milburn, G. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  103. Gao, W.-B. et al. Teleportation-based realisation of an optical quantum two-qubit entangling gate. Proc. Natl Acad. Sci. USA 107, 20869–20874 (2010).

    Article  ADS  Google Scholar 

  104. Gross, D. & Eisert, J. Novel schemes for measurement-based quantum computing. Phys. Rev. Lett. 98, 220503 (2007).

    Article  ADS  Google Scholar 

  105. Nielsen, M. A. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).

    Article  ADS  Google Scholar 

  106. Menicucci, N. C. et al. Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006).

    Article  ADS  Google Scholar 

  107. Zhang, J. & Braunstein, S. L. Continuous-variable Gaussian analog of cluster states. Phys. Rev. A 73, 032318 (2006).

    Article  ADS  Google Scholar 

  108. Yokoyama, S. et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nature Photon. 7, 982–986 (2013).

    Article  ADS  Google Scholar 

  109. Ishizaka, S. & Hiroshima, T. Quantum teleportation scheme by selecting one of multiple output ports. Phys. Rev. A 79, 042306 (2009).

    Article  ADS  Google Scholar 

  110. Strelchuk, S., Horodecki, M. & Oppenheim, J. Generalised teleportation and entanglement recycling. Phys. Rev. Lett. 110, 010505 (2013).

    Article  ADS  Google Scholar 

  111. Beigi, S. & König, R. Simplified instantaneous non-local quantum computation with applications to position-based cryptography. New J. Phys. 13, 093036 (2011).

    Article  ADS  Google Scholar 

  112. Buhrman, H. et al. Quantum communication complexity advantage implies violation of a Bell inequality. Preprint at http://arxiv.org/abs/1502.01058v1 (2015).

  113. Grice, W. P. Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A 84, 042331 (2011).

    Article  ADS  Google Scholar 

  114. Zaidi, H. A. & van Loock, P. Beating the one-half limit of ancilla-free linear optics Bell measurements. Phys. Rev. Lett. 110, 260501 (2013).

    Article  ADS  Google Scholar 

  115. Ewert, F. & van Loock, P. 3/4-efficient Bell measurement with passive linear optics and unentangled ancillae. Phys. Rev. Lett. 113, 140403 (2014).

    Article  ADS  Google Scholar 

  116. Braunstein, S. L. & Kimble H. J. A posteriori teleportation. Nature 394, 840–841 (1998).

    Article  ADS  Google Scholar 

  117. Pan, J.-W., Gasparoni, S., Aspelmeyer, M., Jennewein, T. & Zeilinger, A. Experimental realization of freely propagating teleported qubits. Nature 421, 721–725 (2003).

    Article  ADS  Google Scholar 

  118. Lee, H.-W. & Kim, J. Quantum teleportation and Bell's inequality using single-particle entanglement. Phys. Rev. A 63, 012305 (2000).

    Article  ADS  Google Scholar 

  119. Brendel, J., Tittel, W., Zbinden, H. & Gisin, N. Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999).

    Article  ADS  Google Scholar 

  120. Ou, Z. Y., Pereira, S. F., Kimble, H. J. & Peng, K. C. Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992).

    Article  ADS  Google Scholar 

  121. Schori, C., Sørensen, J. L. & Polzik, E. S. Narrow-band frequency tunable light source of continuous quadrature entanglement. Phys. Rev. A 66, 033802 (2002).

    Article  ADS  Google Scholar 

  122. Furusawa, A. & van Loock, P. Quantum Teleportation and Entanglement — A Hybrid Approach to Optical Quantum Information Processing (Wiley, 2011).

    Book  Google Scholar 

  123. Andersen, U. L. & Ralph, T. C. High-fidelity teleportation of continuous-variable quantum states using delocalised single photons. Phys. Rev. Lett. 111, 050504 (2013).

    Article  ADS  Google Scholar 

  124. Simon, C. et al. Quantum memories. Eur. Phys. J. D 58, 1–22 (2010).

    Article  ADS  Google Scholar 

  125. Julsgaard, B. et al. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).

    Article  ADS  Google Scholar 

  126. Radnaev, A. G. et al. A quantum memory with telecom-wavelength conversion. Nature Phys. 6, 894–899 (2010).

    Article  ADS  Google Scholar 

  127. Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nature Phys. 11, 37–42 (2015).

    Article  ADS  Google Scholar 

  128. Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article  ADS  Google Scholar 

  129. Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008).

    Article  ADS  Google Scholar 

  130. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    Article  ADS  Google Scholar 

  131. Xiang, Z.-L., Ashhab, S., You, J. Q. & Nori, F. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013).

    Article  ADS  Google Scholar 

  132. Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).

    Article  ADS  Google Scholar 

  133. O'Brien, C., Lauk, N., Blum, S., Morigi, G. & Fleischhauer, M. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. Phys. Rev. Lett. 113, 063603 (2014).

    Article  ADS  Google Scholar 

  134. Braunstein, S. L., D'Ariano, G. M., Milburn, G. J. & Sacchi, M. F. Universal teleportation with a twist. Phys. Rev. Lett. 84, 3486–3489 (2000).

    Article  ADS  Google Scholar 

  135. Harty, T. P. et al. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett. 113, 220501 (2014).

    Article  ADS  Google Scholar 

  136. Specht, H. P. et al. A single-atom quantum memory. Nature 473, 190–193 (2011).

    Article  ADS  Google Scholar 

  137. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    Article  ADS  Google Scholar 

  138. Jobez, P. et al. Coherent spin control at the quantum level in an ensemble-based optical memory. Phys. Rev. Lett. 114, 230502 (2015).

    Article  ADS  Google Scholar 

  139. Reagor, M. et al. A quantum memory with near-millisecond coherence in circuit QED. Preprint at http://arxiv.org/abs/1508.05882 (2015).

  140. Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nature Commun. 4, 1743 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.P. was supported by the Leverhulme Trust (qBIO) and the EPSRC, via qDATA (Grant No. EP/L011298/1) and the UK Quantum Communications Hub (Grant No. EP/M013472/1). J.E. was supported by BMBF (Q.com), the EU (SIQS, RAQUEL, AQuS) and the ERC (TAQ). The authors would like to acknowledge useful feedback from U. L. Andersen, G. Chiribella, N. Gisin, A. İmamoğlu, C.-Y. Lu, P. van Loock, S. Mancini, C. Monroe, S. Olmschenk, J. W. Pan, W. Pfaff, E. Polzik, S. Popescu, T. C. Ralph, V. Scarani, F. Sciarrino, C. Simon, R. Thew, W. Tittel, A. Wallraff and D. J. Wineland.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to selecting the literature, critical discussions and checking the manuscript for accuracy. S.P. reviewed the selected literature, and wrote the majority of the manuscript. J.E. and S.L.B. contributed to the writing/editing of the theory sections.

Corresponding author

Correspondence to S. Pirandola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirandola, S., Eisert, J., Weedbrook, C. et al. Advances in quantum teleportation. Nature Photon 9, 641–652 (2015). https://doi.org/10.1038/nphoton.2015.154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing