Boson sampling for molecular vibronic spectra

Abstract

Controllable quantum devices open novel directions to both quantum computation and quantum simulation. Recently, a problem known as boson sampling has been shown to provide a pathway for solving a computationally intractable problem without the need for a full quantum computer, instead using a linear optics quantum set-up. In this work, we propose a modification of boson sampling for the purpose of quantum simulation. In particular, we show that, by means of squeezed states of light coupled to a boson sampling optical network, one can generate molecular vibronic spectra, a problem for which no efficient classical algorithm is currently known. We provide a general framework for carrying out these simulations via unitary quantum optical transformations and supply specific molecular examples for future experimental realization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Pictorial description of boson sampling and molecular vibronic spectroscopy.
Figure 2: Boson sampling apparatus for vibronic spectra.
Figure 3: FCP (black sticks) of formic acid
Figure 4: FCP (black sticks) of thymine

References

  1. 1

    Deutsch, D. & Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553–558 (1992).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2

    Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997).

    ADS  Article  Google Scholar 

  3. 3

    Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

    ADS  Article  Google Scholar 

  5. 5

    Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012).

    ADS  Article  Google Scholar 

  6. 6

    Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).

    ADS  Article  Google Scholar 

  7. 7

    Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Lloyd, S. Universal quantum simulators. Science 273, 1073–1077 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9

    Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

    ADS  Article  Google Scholar 

  10. 10

    Kassal, I., Whitfield, J. D., Perdomo-Ortiz, A., Yung, M.-H. & Aspuru-Guzik, A. Simulating chemistry using quantum computers. Ann. Rev. Phys. Chem. 62, 185–207 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Babbush, R., McClean, J., Wecker, D., Aspuru-Guzik, A. & Wiebe, N. Chemical basis of Trotter–Suzuki errors in quantum chemistry simulation. Phys. Rev. A 91, 022311 (2015).

    ADS  Article  Google Scholar 

  12. 12

    Aaronson, S. & Arkhipov, A. in Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (eds Fortnow, L. & Vadhan, S.) 333–342 (ACM, 2011).

    Google Scholar 

  13. 13

    Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    ADS  Article  Google Scholar 

  14. 14

    Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    ADS  Article  Google Scholar 

  15. 15

    Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nature Photon. 7, 545–549 (2013).

    ADS  Article  Google Scholar 

  16. 16

    Tillmann, M. et al. Experimental boson sampling. Nature Photon. 7, 540–544 (2013).

    ADS  Article  Google Scholar 

  17. 17

    Shchesnovich, V. S. Conditions for an experimental boson-sampling computer to disprove the extended Church–Turing thesis. Preprint at http://arxiv.org/abs/1403.4459v6 (2014).

  18. 18

    Rohde, P. P., Motes, K. R., Knott, P. A. & Munro, W. J. Will boson-sampling ever disprove the extended Church–Turing thesis? Preprint at http://arxiv.org/abs/1401.2199v2 (2014).

  19. 19

    Sharp, T. E. & Rosenstock, H. M. Franck–Condon factors for polyatomic molecules. J. Chem. Phys. 41, 3453–3463 (1964).

    ADS  Article  Google Scholar 

  20. 20

    Doktorov, E. V., Malkin, I. A. & Man'ko, V. I. Dynamical symmetry of vibronic transitions in polyatomic molecules and the Franck–Condon principle. J. Mol. Spectrosc. 64, 302–326 (1977).

    ADS  Article  Google Scholar 

  21. 21

    Malmqvist, P.-Å. & Forsberg, N. Franck–Condon factors for multidimensional harmonic oscillators. Chem. Phys. 228, 227–240 (1998).

    Article  Google Scholar 

  22. 22

    Ruhoff, P. T. & Ratner, M. A. Algorithm for computing Franck–Condon overlap integrals. Int. J. Quantum Chem. 77, 383–392 (2000).

    Article  Google Scholar 

  23. 23

    Jankowiak, H.-C., Stuber, J. L. & Berger, R. Vibronic transitions in large molecular systems: rigorous prescreening conditions for Franck–Condon factors. J. Chem. Phys. 127, 234101 (2007).

    ADS  Article  Google Scholar 

  24. 24

    Santoro, F., Lami, A., Improta, R. & Barone, V. Effective method to compute vibrationally resolved optical spectra of large molecules at finite temperature in the gas phase and in solution. J. Chem. Phys. 126, 184102 (2007).

    ADS  Article  Google Scholar 

  25. 25

    Hachmann, J. et al. The Harvard Clean Energy Project: large-scale computational screening and design of organic photovoltaics on the world community grid. J. Phys. Chem. Lett. 2, 2241–2251 (2011).

    Article  Google Scholar 

  26. 26

    Gross, M. et al. Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes. Nature 405, 661–665 (2000).

    ADS  Article  Google Scholar 

  27. 27

    Dierksen, M. & Grimme, S. The vibronic structure of electronic absorption spectra of large molecules: a time-dependent density functional study on the influence of ‘exact’ Hartree–Fock exchange. J. Phys. Chem. A 108, 10225–10237 (2004).

    Article  Google Scholar 

  28. 28

    Hayes, D., Wen, J., Panitchayangkoon, G., Blankenship, R. E. & Engel, G. S. Robustness of electronic coherence in the Fenna–Matthews–Olson complex to vibronic and structural modifications. Faraday Discuss. 150, 459–469 (2011).

    ADS  Article  Google Scholar 

  29. 29

    Choi, K.-W., Lee, J.-H. & Kim, S. K. Ionization spectroscopy of DNA base: vacuum-ultraviolet mass-analyzed threshold ionization spectroscopy of jet-cooled thymine. J. Am. Chem. Soc. 127, 15674–15675 (2005).

    Article  Google Scholar 

  30. 30

    Duschinsky, F. The importance of the electron spectrum in multiatomic molecules. Concerning the Franck–Condon principle. Acta Physicochim. URSS 7, 551–566 (1937).

    Google Scholar 

  31. 31

    Ma, X. & Phodes, W. Multimode squeeze operators and squeezed states. Phys. Rev. A 41, 4625–4631 (1990).

    ADS  Article  Google Scholar 

  32. 32

    Scheel, S. Permanents in linear optical networks. Preprint at http://arxiv.org/abs/quant-ph/0406127 (2004).

  33. 33

    Huh, J. Unified Description of Vibronic Transitions with Coherent States. PhD thesis, Goethe Univ. Frankfurt (2011).

  34. 34

    Lund, A. P. et al. Boson sampling from a Gaussian state. Phys. Rev. Lett. 113, 100502 (2014).

    ADS  Article  Google Scholar 

  35. 35

    Santoro, F., Lami, A., Improta, R., Bloino, J. & Barone, V. Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg–Teller effect: the Q x band of porphyrin as a case study. J. Chem. Phys. 128, 224311 (2008).

    ADS  Article  Google Scholar 

  36. 36

    Rahimi-Keshari, S., Lund, A. P. & Ralph, T. C. What can quantum optics say about complexity theory? Preprint at http://arxiv.org/abs/1408.3712v1 (2014).

  37. 37

    Olson, J. P., Seshadreesan, K. P., Motes, K. R., Rohde, P. P. & Dowling, J. P. Sampling arbitrary photon-added or photon-subtracted squeezed states is in the same complexity class as boson sampling. Phys. Rev. A 91, 022317 (2015).

    ADS  Article  Google Scholar 

  38. 38

    Berger, R. & Klessinger, M. Algorithms for exact counting of energy levels of spectroscopic transitions at different temperatures. J. Comput. Chem. 18, 1312–1319 (1997).

    Article  Google Scholar 

  39. 39

    Berger, R., Fischer, C. & Klessinger, M. Calculation of the vibronic fine structure in electronic spectra at higher temperatures. 1. Benzene and pyrazine. J. Phys. Chem. 102, 7157–7176 (1998).

    Article  Google Scholar 

  40. 40

    Leach, S. et al. He I photoelectron spectroscopy of four isotopologues of formic acid: HCOOH, HCOOD, DCOOH and DCOOD. Chem. Phys. 286, 15–43 (2003).

    Article  Google Scholar 

  41. 41

    Carolan, J. et al. On the experimental verification of quantum complexity in linear optics. Nature Photon. 8, 621–626 (2014).

    ADS  Article  Google Scholar 

  42. 42

    Josse, V., Sabuncu, M., Cerf, N., Leuchs, G. & Andersen, U. Universal optical amplification without nonlinearity. Phys. Rev. Lett. 96, 163602 (2006).

    ADS  Article  Google Scholar 

  43. 43

    Yoshikawa, J.-I. et al. Demonstration of deterministic and high fidelity squeezing of quantum information. Phys. Rev. A 76, 060301(R) (2007).

    ADS  Article  Google Scholar 

  44. 44

    Miwa, Y. et al. Exploring a new regime for processing optical qubits: squeezing and unsqueezing single photons. Phys. Rev. Lett. 113, 013601 (2014).

    ADS  Article  Google Scholar 

  45. 45

    Jerrum, M., Sinclair, A. & Vigoda, E. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51, 671–697 (2004).

    MathSciNet  Article  Google Scholar 

  46. 46

    Huh, J., Neff, M., Rauhut, G. & Berger, R. Franck–Condon profiles in photodetachment–photoelectron spectra of HS2 and DS2 based on vibrational configuration interaction wavefunctions. Mol. Phys. 108, 409–423 (2010).

    ADS  Article  Google Scholar 

  47. 47

    Huh, J. & Berger, R. Application of time-independent cumulant expansion to calculation of Franck–Condon profiles for large molecular systems. Faraday Discuss. 150, 363–373 (2011).

    ADS  Article  Google Scholar 

  48. 48

    Huh, J. & Berger, R. Coherent state-based generating function approach for Franck–Condon transitions and beyond. J. Phys. Conf. Ser. 380, 012019 (2012).

    Article  Google Scholar 

  49. 49

    Kan, R. From moments of sum to moments of product. J. Multivariate Anal. 99, 542–554 (2008).

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Berger for permission to use the vibronic structure program hotFCHT for our research. J.H. and A.A.-G. acknowledge a Defense Threat Reduction Agency grant HDTRA1-10-1-0046 and the Air Force Office of Scientific Research grant FA9550-12-1-0046. J.R.M. is supported by the Department of Energy Computational Science Graduate Fellowship under grant number DE-FG02-97ER25308. G.G.G. and A.A.-G. acknowledge support from Natural Sciences Foundation (NSF) Grant No. CHE-1152291. B.P. and A.A.-G. acknowledge support from the Science and Technology Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319. Furthermore, A.A.-G. is grateful for support from the Defense Advanced Research Projects Agency grant N66001-10-1-4063, and the Corning Foundation for their generous support.

Author information

Affiliations

Authors

Contributions

J.H., G.G.G. and A.A.-G. conceived and designed the experiments. J.H. and G.G.G. performed the simulations. J.H., G.G.G., B.P. and J.R.M. contributed materials and/or analysis tools. J.H., G.G.G., B.P., J.R.M. and A.A.-G. worked on the theory, analysed the data and wrote the paper.

Corresponding authors

Correspondence to Joonsuk Huh or Alán Aspuru-Guzik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 331 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huh, J., Guerreschi, G., Peropadre, B. et al. Boson sampling for molecular vibronic spectra. Nature Photon 9, 615–620 (2015). https://doi.org/10.1038/nphoton.2015.153

Download citation

Further reading