Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical nanoscopy with excited state saturation at liquid helium temperatures

Abstract

Optical resolution of solid-state single quantum emitters at the nanometre scale is a challenging step towards the control of delocalized states formed by strongly and coherently interacting emitters1. We have developed a simple super-resolution optical microscopy method operating at cryogenic temperatures, which is based on optical saturation of the excited state of single fluorescent molecules with a doughnut-shaped beam. Sub-10 nm resolution is achieved with extremely low excitation intensities, a million times lower than those used in room-temperature stimulated emission depletion microscopy2. Compared with super-localization approaches3,4,5,6, our technique offers a unique opportunity to super-resolve single molecules with overlapping optical resonance frequencies and paves the way to the study of coherent interactions between single emitters and to the manipulation of their degree of entanglement7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of ESSat microscopy.
Figure 2: Experimental set-up of the cryogenic ESSat microscope.
Figure 3: Experimental results of direct ESSat microscopy.
Figure 4: Principle and experimental results of modulated-ESSat microscopy.

Similar content being viewed by others

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

    Book  Google Scholar 

  2. Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photon. 3, 144–147 (2009).

    Article  ADS  Google Scholar 

  3. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  ADS  Google Scholar 

  4. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  5. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

    Article  Google Scholar 

  6. Godin, A. G., Lounis, B. & Cognet, L. Super-resolution microscopy approaches for live cell imaging. Biophys. J. 107, 1777–1784 (2014).

    Article  Google Scholar 

  7. Hettich, C. et al. Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science 298, 385–389 (2002).

    Article  Google Scholar 

  8. Kasprzak, J., Patton, B., Savona, V. & Langbein, W. Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging. Nature Photon. 5, 57–63 (2010).

    Article  ADS  Google Scholar 

  9. Moerner, W. E. & Orrit, M. Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999).

    Article  ADS  Google Scholar 

  10. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349 (2008).

    Article  ADS  Google Scholar 

  11. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  12. Jelezko, F. & Wrachtrup, J. Single defect centres in diamond: a review. Phys. Status Solidi A 203, 3207–3225 (2006).

    Article  ADS  Google Scholar 

  13. Herek, J. L., Wohlleben, W., Cogdell, R. J., Zeidler, D. & Motzkus, M. Quantum control of energy flow in light harvesting. Nature 417, 533–535 (2002).

    Article  ADS  Google Scholar 

  14. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  ADS  Google Scholar 

  15. Hwang, I. & Scholes, G. D. Electronic energy transfer and quantum-coherence in π-conjugated polymers. Chem. Mater. 23, 610–620 (2011).

    Article  Google Scholar 

  16. Wu, J. & Wang, Z. M. Quantum Dot Molecules (Springer Science & Business Media, 2013).

    Google Scholar 

  17. Xiang, Z.-L., Ashhab, S., You, J. Q. & Nori, F. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013).

    Article  ADS  Google Scholar 

  18. Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

    Article  ADS  Google Scholar 

  19. Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    Article  ADS  Google Scholar 

  20. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    Article  ADS  Google Scholar 

  21. Northup, T. E. & Blatt, R. Quantum information transfer using photons. Nature Photon. 8, 356–363 (2014).

    Article  ADS  Google Scholar 

  22. Gao, W.-B., Imamoglu, A., Bernien, H. & Hanson, R. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nature Photon. 9, 363–373 (2015).

    Article  ADS  Google Scholar 

  23. Tamarat, P. et al. Pump–probe experiments with a single molecule: ac-Stark effect and nonlinear optical response. Phys. Rev. Lett. 75, 1514 (1995).

    Article  ADS  Google Scholar 

  24. Brunel, C., Lounis, B., Tamarat, P. & Orrit, M. Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722 (1999).

    Article  ADS  Google Scholar 

  25. Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nature Phys. 4, 60–66 (2007).

    Article  ADS  Google Scholar 

  26. Hwang, J. et al. A single-molecule optical transistor. Nature 460, 76–80 (2009).

    Article  ADS  Google Scholar 

  27. Trebbia, J.-B., Tamarat, P. & Lounis, B. Indistinguishable near-infrared single photons from an individual organic molecule. Phys. Rev. A 82, 063803 (2010).

    Article  ADS  Google Scholar 

  28. Tamarat, P., Maali, A., Lounis, B. & Orrit, M. Ten years of single-molecule spectroscopy. J. Phys. Chem. A 104, 1–16 (2000).

    Article  Google Scholar 

  29. Basché, T., Moerner, W. E., Orrit, M. & Wild, U. P. Single Molecule Optical Detection, Imaging (VCH, 1996).

    Book  Google Scholar 

  30. Heintzmann, R., Jovin, T. M. & Cremer, C. Saturated patterned excitation microscopy—a concept for optical resolution improvement. J. Opt. Soc. Am. A 19, 1599 (2002).

    Article  ADS  Google Scholar 

  31. Rego, E. H. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl Acad. Sci. USA 109, E135–E143 (2012).

    Article  Google Scholar 

  32. Fujita, K., Kobayashi, M., Kawano, S., Yamanaka, M. & Kawata, S. High-resolution confocal microscopy by saturated excitation of fluorescence. Phys. Rev. Lett. 99, 228105 (2007).

    Article  ADS  Google Scholar 

  33. Chang, Y.-W. et al. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nature Methods 11, 737–739 (2014).

    Article  Google Scholar 

  34. Kaufmann, R. et al. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett. 14, 4171–4175 (2014).

    Article  ADS  Google Scholar 

  35. Weisenburger, S. et al. Cryogenic colocalization microscopy for nanometer-distance measurements. ChemPhysChem 15, 763–770 (2014).

    Article  Google Scholar 

  36. Giske, A. CryoSTED Microscopy—A New Spectroscopic Approach for Improving the Resolution of STED Microscopy using Low Temperature PhD thesis, Univ. Heidelberg (2007); http://archiv.ub.uni-heidelberg.de/volltextserver/7969/.

  37. Eggeling, C., Willig, K. I., Sahl, S. J. & Hell, S. W. Lens-based fluorescence nanoscopy. Q. Rev. Biophys. 48, 178–243 (2015).

    Article  Google Scholar 

  38. Gerhardt, I., Wrigge, G., Hwang, J., Zumofen, G. & Sandoghdar, V. Coherent nonlinear single-molecule microscopy. Phys. Rev. A 82, 063823 (2010).

    Article  ADS  Google Scholar 

  39. Van Oijen, A. M., Köhler, J., Schmidt, J., Müller, M. & Brakenhoff, G. J. 3-dimensional super-resolution by spectrally selective imaging. Chem. Phys. Lett. 292, 183–187 (1998).

    Article  ADS  Google Scholar 

  40. Gould, T. J., Burke, D., Bewersdorf, J. & Booth, M. J. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express 20, 20998–21009 (2012).

    Article  ADS  Google Scholar 

  41. Wildanger, D. et al. Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization. Adv. Mater. 24, OP309–OP313 (2012).

    Article  Google Scholar 

  42. Rittweger, E., Wildanger, D. & Hell, S. W. Far-field fluorescence nanoscopy of diamond color centers by ground state depletion. Europhys. Lett. 86, 14001 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Région Aquitaine, the French Ministry of Education and Research, the Institut Universitaire de France and the Agence Nationale de la Recherche (France Bio Imaging, grant no. ANR-10-INSB-04-01).

Author information

Authors and Affiliations

Authors

Contributions

B.Y., J.-B.T. and R.B. performed the experiments. B.Y. and J.-B.T. contributed materials/analysis tools. B.Y., J.-B.T., Ph.T. and B.L. analysed the data and wrote the manuscript. B.L. conceived and supervised the project.

Corresponding author

Correspondence to B. Lounis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 990 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Trebbia, JB., Baby, R. et al. Optical nanoscopy with excited state saturation at liquid helium temperatures. Nature Photon 9, 658–662 (2015). https://doi.org/10.1038/nphoton.2015.152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing