Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasmon-induced resonance energy transfer for solar energy conversion

Abstract

In Förster resonance energy transfer (FRET), energy non-radiatively transfers from a blue-shifted emitter to a red-shifted absorber by dipole–dipole coupling. This study shows that plasmonics enables the opposite transfer direction, transferring the plasmonic energy towards the short-wavelength direction to induce charge separation in a semiconductor. Plasmon-induced resonance energy transfer (PIRET) differs from FRET because of the lack of a Stoke's shift, non-local absorption effects and a strong dependence on the plasmon's dephasing rate and dipole moment. PIRET non-radiatively transfers energy through an insulating spacer layer, which prevents interfacial charge recombination losses and dephasing of the plasmon from hot-electron transfer. The distance dependence of dipole–dipole coupling is mapped out for a range of detuning across the plasmon resonance. PIRET can efficiently harvest visible and near-infrared sunlight with energy below the semiconductor band edge to help overcome the constraints of band-edge energetics for single semiconductors in photoelectrochemical cells, photocatalysts and photovoltaics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coherent dipole–dipole coupling.
Figure 2: Complementary energy transfer with PIRET and FRET in Au@SiO2@Cu2O.
Figure 3: PIRET coupling with distance and wavelength for Au@SiO2@Cu2O.
Figure 4: Transient dynamics of PIRET.
Figure 5: Enhancement of photoconversion by PIRET.

Similar content being viewed by others

References

  1. Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    Article  ADS  Google Scholar 

  2. Bolton, J., Strickler, S. & Connolly, J. Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985).

    Article  ADS  Google Scholar 

  3. De Vos, A. Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D 13, 839–846 (1980).

    Article  ADS  Google Scholar 

  4. Ross, R. T. & Nozik, A. J. Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53, 3813–3818 (1982).

    Article  ADS  Google Scholar 

  5. Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 075410 (2006).

    Article  Google Scholar 

  6. Förster, T. Intermolecular energy migration and fluorescence. Ann. Phys. 437, 55–75 (1948).

    Article  Google Scholar 

  7. Lessard-Viger, M., Rioux, M., Rainville, L. & Boudreau, D. FRET enhancement in multilayer core–shell nanoparticles. Nano Lett. 9, 3066–3071 (2009).

    Article  ADS  Google Scholar 

  8. Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer Academic, 2006).

    Book  Google Scholar 

  9. Lunz, M. et al. Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers. Nano Lett. 11, 3341–3345 (2011).

    Article  ADS  Google Scholar 

  10. Vasa, P. et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nature Photon. 7, 128–132 (2013).

    Article  ADS  Google Scholar 

  11. Dai, X. et al. Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor. Phys. Rev. Lett. 108, 193201 (2012).

    Article  ADS  Google Scholar 

  12. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  ADS  Google Scholar 

  13. Tabachnyk, M. et al. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nature Mater. 13, 1033–1038 (2014).

    Article  ADS  Google Scholar 

  14. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  ADS  Google Scholar 

  15. Cushing, S. K. & Wu, N. Q. Plasmon-enhanced solar energy harvesting. Interface 22, 63–67 (2013).

    Google Scholar 

  16. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).

    Article  ADS  Google Scholar 

  17. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

    Article  ADS  Google Scholar 

  18. Furube, A., Du, L., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 14852–14853 (2007).

    Article  Google Scholar 

  19. Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotechnol. 8, 247–251 (2013).

    Article  ADS  Google Scholar 

  20. Leenheer, A. J., Narang, P., Lewis, N. S. & Atwater, H. A. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates. J. Appl. Phys. 115, 134301 (2014).

    Article  ADS  Google Scholar 

  21. Giugni, A. et al. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nature Nanotechnol. 8, 845–852 (2013).

    Article  ADS  Google Scholar 

  22. Warren, S. C. & Thimsen, E. Plasmonic solar water splitting. Energy Environ. Sci. 5, 5133–5146 (2012). .

    Article  Google Scholar 

  23. Cushing, S. K. et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012).

    Article  Google Scholar 

  24. Li, J. et al. Ag@Cu2O core–shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal. 3, 47–51 (2013).

    Article  Google Scholar 

  25. Li, J. et al. Plasmon-induced photonic and energy transfer enhancement of solar water splitting by a hematite nanorod array. Nature Commun. 4, 2651 (2013).

    Article  ADS  Google Scholar 

  26. Meng, F., Cushing, S. K., Li, J., Hao, S., & Wu, N. Enhancement of solar hydrogen generation by synergistic interaction of La2Ti2O7 photocatalyst with plasmonic gold nanoparticles and reduced graphene oxide nanosheets. ACS Catal. 5, 1949–1955 (2015).

    Article  Google Scholar 

  27. Nitzan, A. Chemical Dynamics in Condensed Phases (Oxford Univ. Press, 2006).

    Google Scholar 

  28. Varada, G. V. & Agarwal, G. S. Two-photon resonance induced by the dipole–dipole interaction. Phys. Rev. A 45, 6721–6729 (1992).

    Article  ADS  Google Scholar 

  29. Sadeghi, S. M. Ultrafast plasmonic field oscillations and optics of molecular resonances caused by coherent exciton–plasmon coupling. Phys. Rev. A 88, 013831 (2013).

    Article  ADS  Google Scholar 

  30. Zhang, W., Govorov, A. O., & Bryant, G. W. Semiconductor–metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. Phys. Rev. Lett. 97, 146804 (2004).

    Article  ADS  Google Scholar 

  31. Zayats, A. V. & Maier, S. A. Active Plasmonics and Tuneable Plasmonic Metamaterials (Wiley, 2013).

    Book  Google Scholar 

  32. Artuso, R. D. & Bryant, G. W. Strongly coupled quantum dot–metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects. Phys. Rev. B 82, 195419 (2010).

    Article  ADS  Google Scholar 

  33. Manjavacas, A., Nordlander, P. & Garcia de Abajo, F. J. Plasmon blockade in nanostructured graphene. ACS Nano 6, 1724–1731 (2012).

    Article  Google Scholar 

  34. Jang, S., Cheng, Y. C., Reichman, D. R. & Eaves, J. D. Theory of coherent resonance energy transfer. J. Chem. Phys. 129, 101104 (2008).

    Article  ADS  Google Scholar 

  35. Becker, P. C. et al. Femtosecond photon echoes from band-to-band transitions in GaAs. Phys. Rev. Lett. 61, 1647–1649 (1988).

    Article  ADS  Google Scholar 

  36. Rosencher, E. Optoelectronics (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  37. Li, Y., Zhao, K., Sobhani, H., Bao, K. & Nordlander, P. Geometric dependence of the line width of localized surface plasmon resonances. J. Phys. Chem. Lett. 4, 1352–1357 (2013).

    Article  Google Scholar 

  38. Mauritz, O., Goldoni, G., Rossi, F. & Molinari, E. Local optical spectroscopy in quantum confined systems: a theoretical description. Phys. Rev. Lett. 82, 847–850 (1999).

    Article  ADS  Google Scholar 

  39. Zhang, X. et al. Enhanced visible light photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core–shell nanoparticles. Nanoscale 5, 3359–3366 (2013).

    Article  ADS  Google Scholar 

  40. Zhang, X. et al. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles. ACS Nano 6, 9283–9290 (2012).

    Article  Google Scholar 

  41. Zhang, X. et al. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer. ACS Nano 8, 1273–1283 (2014).

    Article  Google Scholar 

  42. Pinchuk, A. & Kreibig, U. Interface decay channel of particle surface plasmon resonance. New J. Phys. 5, 151 (2003).

    Article  ADS  Google Scholar 

  43. Olsen, L. C., Bohara, R. C. & Urie, M. W. Explanation for low efficiency Cu2O Schottky barrier solar cells. Appl. Phys. Lett. 34, 47–49 (1979).

    Article  ADS  Google Scholar 

  44. Palfrey, S. I. & Heinz, T. F. Coherent interactions in pump–probe absorption measurements: the effect of phase gratings. J. Opt. Soc. Am. B 2, 674–679 (1985).

    Article  ADS  Google Scholar 

  45. Guenther, T. et al. Coherent nonlinear optical response of single quantum dots studied by ultrafast near-field spectroscopy. Phys. Rev. Lett. 89, 057401 (2002).

    Article  ADS  Google Scholar 

  46. Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999).

    Article  Google Scholar 

  47. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys. Sci. 241, 20–22 (1973).

    Article  ADS  Google Scholar 

  48. Liz-Marzan, L. M., Giersig, M. & Mulvaney, M. Synthesis of nanosized gold–silica core–shell particles. Langmuir 12, 4329–4335 (1996).

    Article  Google Scholar 

  49. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    Article  ADS  Google Scholar 

  50. Kuo, C. H., Hua, T. & Huang, M. H. Au nanocrystal-directed growth of Au−Cu2O core−shell heterostructures with precise morphological control. J. Am. Chem. Soc. 131, 17871–17878 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF) (CBET-1233795) and NSF Graduate Research Fellowship under Grant No. (1102689). The resource and facilities were partially supported by the Army Research Laboratory (W911NF-14-2-0116) and NSF (EPS 1003907). The use of the West Virginia University shared facilities is appreciated.

Author information

Authors and Affiliations

Authors

Contributions

N.W. conceived the idea and concepts, and initiated, designed and guided the research. J.L. synthesized the test materials and conducted the photocatalysis measurements. S.K.C. also conceived the concepts, and conducted the transient absorption measurements, theoretical calculations and data analysis. F.M. and T.R.S. performed the microstructure characterization and materials testing. A.D.B. assisted with the analysis and discussion. S.K.C., N.W., J.L. and A.D.B. wrote the manuscript.

Corresponding author

Correspondence to Nianqiang Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Cushing, S., Meng, F. et al. Plasmon-induced resonance energy transfer for solar energy conversion. Nature Photon 9, 601–607 (2015). https://doi.org/10.1038/nphoton.2015.142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing