Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrically driven optical antennas

Abstract

Unlike radiowave antennas, so far optical nanoantennas cannot be fed by electrical generators. Instead, they are driven by light1 or indirectly via excited discrete states in active materials2,3 in their vicinity. Here we demonstrate the direct electrical driving of an in-plane optical antenna by the broadband quantum-shot noise of electrons tunnelling across its feed gap. The spectrum of the emitted photons is determined by the antenna geometry and can be tuned via the applied voltage. Moreover, the direction and polarization of the light emission are controlled by the antenna resonance, which also improves the external quantum efficiency by up to two orders of magnitude. The one-material planar design offers facile integration of electrical and optical circuits and thus represents a new paradigm for interfacing electrons and photons at the nanometre scale, for example for on-chip wireless communication and highly configurable electrically driven subwavelength photon sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrically driven optical antenna.
Figure 2: Electro-optical characterization.
Figure 3: Tunability and efficiency.
Figure 4: Radiation pattern.

Similar content being viewed by others

References

  1. Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  ADS  Google Scholar 

  2. Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

    Article  ADS  Google Scholar 

  3. Huang, K. C. Y. et al. Antenna electrodes for controlling electroluminescence. Nature Commun. 3, 1005 (2012).

    Article  ADS  Google Scholar 

  4. Sirtori, C. Applied physics: bridge for the terahertz gap. Nature 417, 132–133 (2002).

    Article  ADS  Google Scholar 

  5. Feynman, R. P. There's plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960).

    Google Scholar 

  6. Lambe, J. & McCarthy, S. L. Light emission from inelastic electron tunneling. Phys. Rev. Lett. 37, 923–925 (1976).

    Article  ADS  Google Scholar 

  7. Hone, D., Mühlschlegel, B. & Scalapino, D. J. Theory of light emission from small particle tunnel junctions. Appl. Phys. Lett. 33, 203 (1978).

    Article  ADS  Google Scholar 

  8. Schneider, N. L., Schull, G. & Berndt, R. Optical probe of quantum shot-noise reduction at a single-atom contact. Phys. Rev. Lett. 105, 026601 (2010).

    Article  ADS  Google Scholar 

  9. Davis, L. C. Theory of surface-plasmon excitation in metal–insulator–metal tunnel junctions. Phys. Rev. B 16, 2482–2490 (1977).

    Article  ADS  Google Scholar 

  10. Downes, A., Taylor, M. E. & Welland, M. E. Two-sphere model of photon emission from the scanning tunneling microscope. Phys. Rev. B 57, 6706–6714 (1998).

    Article  ADS  Google Scholar 

  11. Berndt, R., Gimzewski, J. K. & Johansson, P. Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces. Phys. Rev. Lett. 67, 3796–3799 (1991).

    Article  ADS  Google Scholar 

  12. Bharadwaj, P., Bouhelier, A. & Novotny, L. Electrical excitation of surface plasmons. Phys. Rev. Lett. 106, 226802 (2011).

    Article  ADS  Google Scholar 

  13. Le Moal, E. et al. An electrically excited nanoscale light source with active angular control of the emitted light. Nano Lett. 13, 4198–4205 (2013).

    Article  ADS  Google Scholar 

  14. Prangsma, J. C. et al. Electrically connected resonant optical antennas. Nano Lett. 12, 3915–3919 (2012).

    Article  ADS  Google Scholar 

  15. Huang, J.-S. et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Commun. 1, 150 (2010).

    Article  ADS  Google Scholar 

  16. Kern, J. et al. Atomic-scale confinement of resonant optical fields. Nano Lett. 12, 5504–5509 (2012).

    Article  ADS  Google Scholar 

  17. Surrey, A., Pohl, D., Schultz, L. & Rellinghaus, B. Quantitative measurement of the surface self-diffusion on Au nanoparticles by aberration-corrected transmission electron microscopy. Nano Lett. 12, 6071–6077 (2012).

    Article  ADS  Google Scholar 

  18. Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).

    Article  ADS  Google Scholar 

  19. Mangin, A., Anthore, A., Della Rocca, M. L., Boulat, E. & Lafarge, P. Reduced work functions in gold electromigrated nanogaps. Phys. Rev. B 80, 235432 (2009).

    Article  ADS  Google Scholar 

  20. Hansma, P. K. & Broida, H. P. Light emission from gold particles excited by electron tunneling. Appl. Phys. Lett. 32, 545 (1978).

    Article  ADS  Google Scholar 

  21. Rendell, R. W. & Scalapino, D. J. Surface plasmons confined by microstructures on tunnel junctions. Phys. Rev. B 24, 3276–3294 (1981).

    Article  ADS  Google Scholar 

  22. Zuloaga, J. & Nordlander, P. On the energy shift between near-field and far-field peak intensities in localized plasmon systems. Nano Lett. 11, 1280–1283 (2011).

    Article  ADS  Google Scholar 

  23. Schull, G., Néel, N., Johansson, P. & Berndt, R. Electron–plasmon and electron–electron interactions at a single atom contact. Phys. Rev. Lett. 102, 057401 (2009).

    Article  ADS  Google Scholar 

  24. Gallagher, M. J., Howells, S., Yi, L., Chen, T. & Sarid, D. Photon emission from gold surfaces in air using scanning tunneling microscopy. Surf. Sci. 278, 270–280 (1992).

    Article  ADS  Google Scholar 

  25. Biagioni, P., Huang, J. S., Duò, L., Finazzi, M. & Hecht, B. Cross resonant optical antenna. Phys. Rev. Lett. 102, 256801 (2009).

    Article  ADS  Google Scholar 

  26. Moth-Poulsen, K. & Bjørnholm, T. Molecular electronics with single molecules in solid-state devices. Nature Nanotechnol. 4, 551–556 (2009).

    Article  ADS  Google Scholar 

  27. Xie, F.-Q., Nittler, L., Obermair, C. & Schimmel, T. Gate-controlled atomic quantum switch. Phys. Rev. Lett. 93, 128303 (2004).

    Article  ADS  Google Scholar 

  28. Stolz, A. et al. Nonlinear photon-assisted tunneling transport in optical gap antennas. Nano Lett. 14, 2330–2338 (2014).

    Article  ADS  Google Scholar 

  29. Große, C. et al. Dynamic control of plasmon generation by an individual quantum system. Nano Lett. 14, 5693–5697 (2014).

    Article  ADS  Google Scholar 

  30. Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).

    Article  ADS  Google Scholar 

  31. Fulga, I. C., Hassler, F. & Beenakker, C. W. J. Nonzero temperature effects on antibunched photons emitted by a quantum point contact out of equilibrium. Phys. Rev. B 81, 115331 (2010).

    Article  ADS  Google Scholar 

  32. Lykkebo, J., Gagliardi, A., Pecchia, A. & Solomon, G. C. strong overtones modes in inelastic electron tunneling spectroscopy with cross-conjugated molecules: a prediction from theory. ACS Nano 7, 9183–9194 (2013).

    Article  Google Scholar 

  33. Schneider, N. L., Lü, J. T., Brandbyge, M. & Berndt, R. Light emission probing quantum shot noise and charge fluctuations at a biased molecular junction. Phys. Rev. Lett. 109, 186601 (2012).

    Article  ADS  Google Scholar 

  34. Wu, X., Kullock, R., Krauss, E. & Hecht, B. Single-crystalline gold microplates grown on substrates by solution-phase synthesis. Cryst. Res. Technol. 50, 595–602 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Großmann for experimental support as well as A. Baratoff and R. Berndt for insightful discussions. The VW-Foundation (Grant I/84036) and the German Research Foundation (HE 5618/4-1) are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.K., R.K., J.P. and B.H. conceived the experiment. J.K., R.K. and J.P. designed the antennas. J.K. and M.E. designed and fabricated the electrode structure. R.K. grew the gold flakes and transferred them. J.K. and R.K. milled the structures and performed the particle pushing. M.K. supervised the FIB fabrication. R.K. programmed experiment-control and data-acquisition software. J.K. and R.K. constructed the experiment, performed the measurements and analysed the data. J.K. performed the finite-difference time-domain simulations. J.K., R.K., J.P. and B.H. co-wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Bert Hecht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1770 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kern, J., Kullock, R., Prangsma, J. et al. Electrically driven optical antennas. Nature Photon 9, 582–586 (2015). https://doi.org/10.1038/nphoton.2015.141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing