Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue

Abstract

In the field of biomedical optics, optical scattering has traditionally limited the range of imaging within tissue to a depth of one millimetre. A recently developed class of wavefront-shaping techniques now aims to overcome this limit and achieve diffraction-limited control of light beyond one centimetre. By manipulating the spatial profile of an optical field before it enters a scattering medium, it is possible to create a micrometre-scale focal spot deep within tissue. To successfully operate in vivo, these wavefront-shaping techniques typically require feedback from within the biological sample. This Review summarizes recently developed 'guidestar' mechanisms that provide feedback for intra-tissue focusing. Potential applications of guidestar-assisted focusing include optogenetic control over neurons, targeted photodynamic therapy and deep tissue imaging.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Principle of wavefront shaping.
Figure 2: Matrix model of scattering in tissue.
Figure 3: Feedback guidestars.
Figure 4: Conjugation guidestars.
Figure 5: Tissue motion dims an OPC focus.

References

  1. 1

    Huang, Z. A review of progress in clinical photodynamic therapy. Technol. Cancer Res. T. 4, 283–293 (2005).

    Article  Google Scholar 

  2. 2

    Ellis-Davies, G. C. R. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nature Methods 4, 619–628 (2007).

    Article  Google Scholar 

  3. 3

    Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nature Protoc. 5, 439–456 (2010).

    Article  Google Scholar 

  4. 4

    Lichtman, J. W. & Conchello, J. A. Fluorescence microscopy. Nature Methods 2, 910–919 (2005).

    Article  Google Scholar 

  5. 5

    Thompson, M. A., Lew, M. D. & Moerner, W. E. Extending microscopic resolution with single-molecule imaging and active control. Annu. Rev. Biophys. 41, 321–342 (2012).

    Article  Google Scholar 

  6. 6

    Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nature Methods 7, 603–611 (2010).

    Article  Google Scholar 

  7. 7

    Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nature Methods 2, 932–940 (2005).

    Article  Google Scholar 

  8. 8

    Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    ADS  Article  Google Scholar 

  9. 9

    Theer, P. & Denk, W. On the fundamental imaging-depth limit in two-photon microscopy. J. Opt. Soc. Am. A 23, 3139–3149 (2006).

    ADS  Article  Google Scholar 

  10. 10

    Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Article  Google Scholar 

  11. 11

    Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nature Photon. 2, 110–115 (2008).

    ADS  Article  Google Scholar 

  12. 12

    Hardy, J. W. Adaptive Optics for Astronomical Telescopes (Oxford Univ. Press, 1998).

    Google Scholar 

  13. 13

    Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon. 6, 283–292 (2012).

    ADS  Article  Google Scholar 

  14. 14

    Vellekoop, I. M., van Putten, E. G., Lagendijk, A. & Mosk, A. P. Demixing light paths inside disordered metamaterials. Opt. Express 16, 67–80 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Vellekoop, I. M., Cui, M. & Yang, C. Digital optical phase conjugation of fluorescence in turbid tissue. Appl. Phys. Lett. 101, 081108 (2012).

    ADS  Article  Google Scholar 

  16. 16

    Hsieh, C. L., Pu, Y., Grange, R. & Psaltis, D. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010).

    ADS  Article  Google Scholar 

  17. 17

    Chaigne T. et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nature Photon. 8, 58–64 (2014).

    ADS  Article  Google Scholar 

  18. 18

    Kong, F. et al. Photoacoustic-guided convergence of light through optically diffusive media. Opt. Lett. 36, 2053–2055 (2011).

    ADS  Article  Google Scholar 

  19. 19

    Caravaca-Aguirre, A. M. et al. High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement. Opt. Express 21, 26671–26676 (2013).

    ADS  Article  Google Scholar 

  20. 20

    Lai, P., Wang, L., Tay, J. W. & Wang, L. V. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nature Photon. 9, 126–132 (2015).

    ADS  Article  Google Scholar 

  21. 21

    Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photon. 5, 154–157 (2011).

    ADS  Article  Google Scholar 

  22. 22

    Si, K., Fiolka, R. & Cui, M. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation. Nature Photon. 6, 657–661 (2012).

    ADS  Article  Google Scholar 

  23. 23

    Wang, Y. M., Judkewitz, B., Dimarzio, C. A. & Yang, C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nature Commun. 3, 928 (2012).

    ADS  Article  Google Scholar 

  24. 24

    Ma, C., Xu, X., Liu, Y. & Wang, L. V. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media. Nature Photon. 8, 931–936 (2014).

    ADS  Article  Google Scholar 

  25. 25

    Zhou, E. H., Ruan, H., Yang, C. & Judkewitz, B. Focusing on moving targets through scattering samples. Optica 1, 227–232 (2014).

    ADS  Article  Google Scholar 

  26. 26

    Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photon. 7, 205–209 (2013).

    ADS  Article  Google Scholar 

  27. 27

    Kang, S. et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves. Nature Photon. 9, 253–258 (2015).

    ADS  Article  Google Scholar 

  28. 28

    Matthews, T. E. et al. Deep tissue imaging using spectroscopic analysis of multiply scattered light. Optica 1, 105–111 (2014).

    ADS  Article  Google Scholar 

  29. 29

    Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nature Med. 9, 123–128 (2003).

    Article  Google Scholar 

  30. 30

    den Outer, P. N., Lagendijk, A. & Nieuwenhuizen, T. M. Location of objects in multiple-scattering media. J. Opt. Soc. Am. A 10, 1209–1218 (1993).

    ADS  Article  Google Scholar 

  31. 31

    Arridge, S. R. Optical tomography in medical imaging. Inverse Probl. 15, R41–R93 (1999).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. 32

    Ntziachristos, V., Tung, C. H., Bremer, C. & Weissleder, R. Fluorescence molecular tomography resolves protease activity in vivo. Nature Med. 8, 757–760 (2002).

    Article  Google Scholar 

  33. 33

    Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    ADS  Article  Google Scholar 

  34. 34

    Beenakker, C. W. J. Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997).

    ADS  Article  Google Scholar 

  35. 35

    Vellekoop, I. M. Controlling the propagation of light in disordered scattering media. PhD thesis, Univ. Twente (2008).

    Google Scholar 

  36. 36

    Goodman, J. W. Speckle Phenomena in Optics: Theory and Applications (Roberts and Co., 2007).

    Google Scholar 

  37. 37

    Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988).

    ADS  Article  Google Scholar 

  38. 38

    Wiersma, D. S. Disordered photonics. Nature Photon. 7, 188–196 (2013).

    ADS  Article  Google Scholar 

  39. 39

    Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012).

    ADS  Article  Google Scholar 

  40. 40

    Katz, O., Heidmann, P., Fink, M. & Gigan, S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nature Photon. 8, 784–790 (2014).

    ADS  Article  Google Scholar 

  41. 41

    Yang, X., Pu, Y. & Psaltis, D. Imaging blood cells through scattering biological tissue using speckle scanning microscopy. Opt. Express 22, 3405–3413 (2014).

    ADS  Article  Google Scholar 

  42. 42

    Judkewitz, B., Horstmeyer, R., Vellekoop, I. M., Papadopoulos, I. N. & Yang, C. Translation correlations in anisotropically scattering media. Nature Phys. 11, 684–689 (2015).

    ADS  Article  Google Scholar 

  43. 43

    Tanter, M., Thomas, J. L. & Fink, M. Time reversal and the inverse filter. J. Acoust. Soc. Am. 108, 223–234 (2000).

    ADS  Article  Google Scholar 

  44. 44

    Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nature Commun. 1, 81 (2010).

    ADS  Article  Google Scholar 

  45. 45

    Kim, M. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nature Photon. 6, 581–585 (2012).

    ADS  Article  Google Scholar 

  46. 46

    Cizmar, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nature Commun. 3, 1027 (2012).

    ADS  Article  Google Scholar 

  47. 47

    Choi, Y. et al. Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium. Phys. Rev. Lett. 111, 243901 (2013).

    ADS  Article  Google Scholar 

  48. 48

    Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    ADS  Article  Google Scholar 

  49. 49

    Conkey, D. B., Caravaca-Aguirre, A. M. & Piestun, R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 20, 1733–1740 (2012).

    ADS  Article  Google Scholar 

  50. 50

    Conkey, D. B., Brown, A. N., Caravaca-Aguirre, A. M. & Piestun, R. Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express 20, 4840–4849 (2012).

    ADS  Article  Google Scholar 

  51. 51

    Vellekoop, I. M. & Mosk, A. P. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101, 120601 (2008).

    ADS  Article  Google Scholar 

  52. 52

    Vellekoop, I. M. Feedback-based wavefront shaping. Opt. Express 23, 12189–12206 (2015).

    ADS  Article  Google Scholar 

  53. 53

    Vellekoop, I. M. & Aegerter, C. M. Scattered light fluorescence microscopy: imaging through turbid layers. Opt. Lett. 35, 1245–1247 (2010).

    ADS  Article  Google Scholar 

  54. 54

    Leutz, W. & Maret, G. Ultrasonic modulation of multiply scattered light. Physica B 204, 14–19 (1995).

    ADS  Article  Google Scholar 

  55. 55

    Tay, J. W., Lai, P., Suzuki, Y. & Wang, L. V. Ultrasonically encoded wavefront shaping for focusing into random media. Sci. Rep. 4, 3918 (2014).

    ADS  Article  Google Scholar 

  56. 56

    Katz, O., Small, E., Guan, Y. & Silberberg, Y. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers. Optica 1, 170–174 (2014).

    ADS  Article  Google Scholar 

  57. 57

    Tang, J., Germain, R. N. & Cui, M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl Acad. Sci. USA 109, 8434–8439 (2012).

    ADS  Article  Google Scholar 

  58. 58

    Fiolka, R., Si, K. & Cui, M. Complex wavefront corrections for deep tissue focusing using low coherence backscattered light. Opt. Express 20, 16532–16543 (2012).

    ADS  Article  Google Scholar 

  59. 59

    Jang, J. et al. Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography. Opt. Express 21, 2890–2902 (2013).

    ADS  Article  Google Scholar 

  60. 60

    Liang, J., Williams, D. R. & Miller, D. T. Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A 14, 2884–2892 (1997).

    ADS  Article  Google Scholar 

  61. 61

    Neil, M. A. et al. Adaptive aberration correction in a two-photon microscope. J. Microsc. 200, 105–108 (2000).

    Article  Google Scholar 

  62. 62

    Albert, O., Sherman, L., Mourou, G., Norris, T. B. & Vdovin, G. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy. Opt. Lett. 25, 52–54 (2000).

    ADS  Article  Google Scholar 

  63. 63

    Booth, M. J., Neil, M. A. A., Juškaitis, R. & Wilson, T. Adaptive aberration correction in a confocal microscope. Proc. Natl Acad. Sci. USA 99, 5788–5792 (2002).

    ADS  Article  Google Scholar 

  64. 64

    Booth, M. J. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl. 3, e165 (2014).

    ADS  Article  Google Scholar 

  65. 65

    Ji, N., Milkie, D. E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nature Methods 7, 141–147 (2010).

    Article  Google Scholar 

  66. 66

    Cizmar, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nature Photon. 4, 388–394 (2010).

    ADS  Article  Google Scholar 

  67. 67

    Kong, L. & Cui, M. In vivo fluorescence microscopy via iterative multi-photon adaptive compensation technique. Opt. Express 22, 23786–23794 (2014).

    ADS  Article  Google Scholar 

  68. 68

    Fried, D. L. Anisoplanatism in adaptive optics. J. Opt. Soc. Am. 72, 52–61 (1982).

    ADS  Article  Google Scholar 

  69. 69

    Meng, C., McDowell, E. J. & Yang, C. An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear. Opt. Express 18, 25–30 (2010).

    ADS  Article  Google Scholar 

  70. 70

    Jang, M. et al. Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin. Biomed. Opt. Express 6, 72–85 (2015).

    Article  Google Scholar 

  71. 71

    Leith, E. N. & Upatnieks, J. Holographic imagery through diffusing media. J. Opt. Soc. Am. 56, 523–523 (1966).

    Article  Google Scholar 

  72. 72

    Goodman, J. W., Huntley, W. H., Jackson, D. W. & Lehmann, M. Wavefront-reconstruction imaging through random media. Appl. Phys. Lett. 8, 311–313 (1966).

    ADS  Article  Google Scholar 

  73. 73

    Yariv, A. Phase conjugate optics and real-time holography. IEEE J. Quantum Electron. 14, 650–660 (1978).

    ADS  Article  Google Scholar 

  74. 74

    Giuliano, C. R. Applications of optical phase conjugation. Phys. Today 34 (4), 27–35 (1981).

    Article  Google Scholar 

  75. 75

    Pepper, D. M. Nonlinear optical phase conjugation. Opt. Eng. 21, 212156 (1982).

    Article  Google Scholar 

  76. 76

    Fisher, R. A. Optical Phase Conjugation (Academic, 1983).

    Google Scholar 

  77. 77

    Cui, M. & Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express 18, 3444–3455 (2010).

    ADS  Article  Google Scholar 

  78. 78

    Bellanger, C., Brignon, A., Colineau, J. & Huignard, J. P. Coherent fiber combining by digital holography. Opt. Lett. 33, 2937–2939 (2008).

    ADS  Article  Google Scholar 

  79. 79

    Jang, M., Ruan, H., Zhou, H., Judkewitz, B. & Yang, C. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation. Opt. Express 22, 14054–14071 (2014).

    ADS  Article  Google Scholar 

  80. 80

    Diaz Santana Haro, L. & Dainty, J. C. Single-pass measurements of the wave-front aberrations of the human eye by use of retinal lipofuscin autofluorescence. Opt. Lett. 24, 61–63 (1999).

    ADS  Article  Google Scholar 

  81. 81

    Azucena, O. et al. Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons. Opt. Express 18, 17521–17532 (2010).

    ADS  Article  Google Scholar 

  82. 82

    Tao, X. et al. Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars. Opt. Lett. 36, 3389–3391 (2011).

    ADS  Article  Google Scholar 

  83. 83

    Wang, K. et al. Rapid adaptive optical recovery of optimal resolution over large volumes. Nature Methods 11, 625–628 (2014).

    Article  Google Scholar 

  84. 84

    Rueckel, M., Mack-Bucher, J. A. & Denk, W. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc. Natl Acad. Sci. USA 103, 17137–17142 (2006).

    ADS  Article  Google Scholar 

  85. 85

    Hermann, B. et al. Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt. Lett. 29, 2142–2144 (2004).

    ADS  Article  Google Scholar 

  86. 86

    Lev, A. & Sfez, B. In vivo demonstration of the ultrasound-modulated light technique. J. Opt. Soc. Am. A 20, 2347–2354 (2003).

    ADS  Article  Google Scholar 

  87. 87

    Jang, M., Ruan, H., Judkewitz, B. & Yang, C. Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique. Opt. Express 22, 5787–5807 (2014).

    ADS  Article  Google Scholar 

  88. 88

    Si, K., Fiolka, R. & Cui, M. Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy. Sci. Rep. 2, 748 (2012).

    ADS  Article  Google Scholar 

  89. 89

    Suzuki, Y., Tay, J. W., Yang, Q. & Wang, L. V. Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation. Opt. Lett. 39, 3441–3444 (2014).

    ADS  Article  Google Scholar 

  90. 90

    Ruan, H., Jang, M., Judkewitz, B. & Yang, C. Iterative time-reversed ultrasonically encoded light focusing in backscattering mode. Sci. Rep. 4, 7156 (2014).

    ADS  Article  Google Scholar 

  91. 91

    Judkewitz, B., Wang, Y. M., Horstmeyer, R., Mathy, A. & Yang, C. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nature Photon. 7, 300–305 (2013).

    ADS  Article  Google Scholar 

  92. 92

    Liu, Y. et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nature Commun. 6, 5904 (2015).

    ADS  Article  Google Scholar 

  93. 93

    Newman, J. A. & Webb, K. J. Imaging optical fields through heavily scattering media. Phys. Rev. Lett. 113, 263903 (2014).

    ADS  Article  Google Scholar 

  94. 94

    Laforest, T. et al. A 4000 Hz CMOS image sensor with in-pixel processing for light measurement and modulation. New Circuits and Systems Conf. (NEWCAS), IEEE 11th Intl 1–4 (2013).

  95. 95

    Vellekoop, I. M. & Aegerter, C. M. Focusing light through living tissue. Proc. SPIE 7554, 755430 (2010).

    Article  Google Scholar 

  96. 96

    Stockbridge, C. et al. Focusing through dynamic scattering media. Opt. Express 20, 15086–15092 (2012).

    ADS  Article  Google Scholar 

  97. 97

    Nixon, M. et al. Real-time wavefront shaping through scattering media by all-optical feedback. Nature Photon. 7, 919–924 (2013).

    ADS  Article  Google Scholar 

  98. 98

    Hollmann, J. L., Horstmeyer, R., Yang, C. & DiMarzio, C. A. Diffusion model for ultrasound-modulated light. J. Biomed. Opt. 19, 035005 (2014).

    ADS  Article  Google Scholar 

  99. 99

    Drémeau, A. et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express 23, 11898–11911 (2015).

    ADS  Article  Google Scholar 

  100. 100

    Yilmaz, H., Vos, W. L. & Mosk, A. P. Optimal control of light propagation through multiple-scattering media in the presence of noise. Biomed. Opt. Express 4, 1759–1768 (2013).

    Article  Google Scholar 

  101. 101

    van Beijnum, F., van Putten, E. G., Lagendijk, A. & Mosk, A. P. Frequency bandwidth of light focused through turbid media. Opt. Lett. 36, 373–375 (2011).

    ADS  Article  Google Scholar 

  102. 102

    Kohlgraf-Owens, T. W. & Dogariu, A. Transmission matrices of random media: means for spectral polarimetric measurements. Opt. Lett. 35, 2236–2238 (2010).

    ADS  Article  Google Scholar 

  103. 103

    Fink, M. Time reversed acoustics. Phys. Today 50 (3), 34–40 (1997).

    MathSciNet  Article  Google Scholar 

  104. 104

    Lerosey, G., de Rosny, J., Tourin, A. & Fink, M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

    ADS  Article  Google Scholar 

  105. 105

    Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 103901 (2011).

    ADS  Article  Google Scholar 

  106. 106

    McCabe, D. J. et al. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. Nature Commun. 2, 447 (2011).

    ADS  Article  Google Scholar 

  107. 107

    Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011).

    ADS  Article  Google Scholar 

  108. 108

    Paudel, H. P., Stockbridge, C., Mertz, J. & Bifano, T. Focusing polychromatic light through strongly scattering media. Opt. Express 21, 17299–17308 (2013).

    ADS  Article  Google Scholar 

  109. 109

    Vogel, A. & Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644 (2003).

    Article  Google Scholar 

  110. 110

    Goto, K., Nakagawa, T., Nakamura, O. & Kawata, S. An implantable power supply with an optically rechargeable lithium battery. IEEE Trans. Biomed. Eng. 48, 830–833 (2001).

    Article  Google Scholar 

  111. 111

    Williams, J. C. & Denison, T. From optogenetic technologies to neuromodulation therapies. Sci. Transl. Med. 5, 177ps6 (2013).

    Article  Google Scholar 

  112. 112

    Yoon, J. et al. Optogenetic signaling-pathway regulation through scattering skull using wavefront shaping. Preprint at http://arxiv.org/abs/1502.04826 (2015).

  113. 113

    Papagiakoumou, E. et al. Functional patterned multiphoton excitation deep inside scattering tissue. Nature Photon. 7, 274–278 (2013).

    ADS  Article  Google Scholar 

  114. 114

    van Putten, E. G., Lagendijk, A. & Mosk, A. P. Optimal concentration of light in turbid materials. J. Opt. Soc. Am. B 28, 1200–1203 (2011).

    ADS  Article  Google Scholar 

  115. 115

    Volpe, G., Kurz, L., Callegari, A., Volpe, G. & Gigan, S. Speckle optical tweezers: micromanipulation with random light fields. Opt. Express 22, 18159–18167 (2014).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Jang, E. Zhou, B. Judkewitz, I. M. Vellekoop, J. Brake, H. Deng and M. Harfouche for helpful feedback during manuscript preparation. This work is supported by the National Institutes of Health (1DP2OD007307-01), the National Institutes of Health BRAIN Initiative (1U01NS090577-01) and a GIST-Caltech Collaborative Research Proposal (CG2012).

Author information

Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Roarke Horstmeyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nature Photon 9, 563–571 (2015). https://doi.org/10.1038/nphoton.2015.140

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing