Article | Published:

Mode-locked dark pulse Kerr combs in normal-dispersion microresonators

Nature Photonics volume 9, pages 594600 (2015) | Download Citation

Abstract

The generation of Kerr frequency combs in a coherently driven nonlinear microresonator is now extensively investigated more generally by the research community as a potentially portable technology for a variety of applications. Here, we report experiments in which dark pulse combs are formed in normal-dispersion microresonators with mode-interaction-assisted excitation, and mode-locking transitions are observed in the normal-dispersion regime. The mode-interaction-aided excitation of dark pulses appears to occur through a deterministic pathway, in sharp contrast to the situation for bright pulses in the anomalous dispersion region. The ability to mode-lock in the normal-dispersion regime increases the freedom in the microresonator design and may make it possible to extend Kerr comb generation into the visible, where material dispersion is likely to dominate.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

  2. 2.

    et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

  3. 3.

    et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon. 4, 37–40 (2010).

  4. 4.

    et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photon. 4, 41–45 (2010).

  5. 5.

    et al. Kerr combs with selectable central frequency. Nature Photon. 5, 293–296 (2011).

  6. 6.

    et al. Silicon-based monolithic optical frequency comb source. Opt. Express 19, 14233–14239 (2011).

  7. 7.

    et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

  8. 8.

    , & Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

  9. 9.

    , & Frequency comb from a microresonator with engineered spectrum. Opt. Express 20, 6604–6609 (2012).

  10. 10.

    et al. Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators. Nature Commun. 4, 1345 (2013).

  11. 11.

    et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photon. 5, 770–776 (2011).

  12. 12.

    & Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys. Rev. A 84, 053833 (2011).

  13. 13.

    et al. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. Opt. Express 20, 29284–29295 (2012).

  14. 14.

    et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photon. 6, 480–487 (2012).

  15. 15.

    et al. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express 21, 1335–1343 (2013).

  16. 16.

    , , & Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys. Rev. Lett. 112, 043905 (2014).

  17. 17.

    et al. Temporal solitons in optical microresonators. Nature Photon. 8, 145–152 (2014). .

  18. 18.

    et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901 (2014).

  19. 19.

    , & Route to stabilized ultrabroadband microresonator-based frequency combs. Opt. Lett. 38, 3478–3481 (2013).

  20. 20.

    , , & Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 38, 37–39 (2013).

  21. 21.

    et al. Mode-locked Kerr frequency combs. Opt. Lett. 36, 2845–2847 (2011).

  22. 22.

    , , , & Hard and soft excitation regimes of Kerr frequency combs. Phys. Rev. A 85, 023830 (2012).

  23. 23.

    , & On excitation of breather solitons in an optical microresonator. Opt. Lett. 37, 4856–4858 (2012).

  24. 24.

    , & Normal group-velocity dispersion Kerr frequency comb. Opt. Lett. 37, 43–45 (2012).

  25. 25.

    , , & Stability analysis of the spatiotemporal Lugiato–Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89, 063814 (2014).

  26. 26.

    Principles of passive mode locking. Appl. Phys. B 58, 159–170 (1994).

  27. 27.

    Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).

  28. 28.

    Spatial Hysteresis and Optical Patterns (Springer, 2002).

  29. 29.

    & Soliton-driven Photonics (Springer, 2001).

  30. 30.

    et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photon. 4, 471–476 (2010).

  31. 31.

    , & Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

  32. 32.

    , & Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 91, 401–407 (1992).

  33. 33.

    & Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber. Phys. Rev. Lett. 79, 4139–4142 (1997).

  34. 34.

    , & Dynamics of the modulational instability in microresonator frequency combs. Phys. Rev. A 88, 023819 (2013).

  35. 35.

    et al. Bistable switching induced by modulational instability in a normally dispersive all-fibre ring cavity. J. Opt. B 1, 36–42 (1999).

  36. 36.

    et al. Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators. IEEE Photon. J. 5, 6100409 (2013).

  37. 37.

    et al. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett. 39, 2920–2923 (2014).

  38. 38.

    , , , & Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature Photon. 3, 529–533 (2009).

  39. 39.

    et al. Kerr frequency comb generation in overmoded resonators. Opt. Express 20, 27290–27298 (2012).

  40. 40.

    et al. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica 1, 137–144 (2014).

  41. 41.

    et al. Strong polarization mode coupling in microresonators. Opt. Lett. 39, 5134–5137 (2014).

  42. 42.

    et al. Drop-port study of microresonator frequency combs: power transfer, spectra and time-domain characterization. Opt. Express 21, 22441–22452 (2013).

  43. 43.

    , & Dispersive wave-breaking in coherently driven passive cavities. Opt. Lett. 39, 2475–2478 (2014).

  44. 44.

    , , & Frequency combs and platicons in optical microresonators with normal GVD. Opt. Express 23, 7713–7721 (2015).

  45. 45.

    et al. Experimental observation of the fundamental dark soliton in optical fibers. Phys. Rev. Lett. 61, 2445–2448 (1988).

  46. 46.

    & Optical Solitons in Fibers (Springer, 2003).

  47. 47.

    et al. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett. 114, 053901 (2015).

  48. 48.

    et al. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt. Express 20, 27661–27669 (2012).

  49. 49.

    et al. Intra-cavity dispersion of microresonators and its engineering for octave-spanning Kerr frequency comb generation. IEEE J. Sel. Top. Quantum Electron. 20, 5900207 (2014).

  50. 50.

    , , , & Optical arbitrary waveform characterization via dual-quadrature spectral shearing interferometry. Opt. Express 17, 3381–3389 (2009).

  51. 51.

    et al. Phase steps and resonator detuning measurements in microresonator frequency combs. Nature Commun. 6, 5668 (2015).

  52. 52.

    Ultrafast Optics (Wiley, 2009).

Download references

Acknowledgements

This work was supported in part by the National Science Foundation under grants ECCS-1102110 and ECCS-1126314, by the Air Force Office of Scientific Research under grant FA9550-12-1-0236 and by the DARPA PULSE program through grant W31P40-13-1-0018 from AMRDEC. The authors thank C.R. Menyuk and G. D'Aguanno for discussions and the reviewers for their comments.

Author information

Affiliations

  1. School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, Indiana 47907-2035, USA

    • Xiaoxiao Xue
    • , Yi Xuan
    • , Yang Liu
    • , Pei-Hsun Wang
    • , Steven Chen
    • , Jian Wang
    • , Dan E. Leaird
    • , Minghao Qi
    •  & Andrew M. Weiner
  2. Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana 47907, USA

    • Yi Xuan
    • , Jian Wang
    • , Minghao Qi
    •  & Andrew M. Weiner

Authors

  1. Search for Xiaoxiao Xue in:

  2. Search for Yi Xuan in:

  3. Search for Yang Liu in:

  4. Search for Pei-Hsun Wang in:

  5. Search for Steven Chen in:

  6. Search for Jian Wang in:

  7. Search for Dan E. Leaird in:

  8. Search for Minghao Qi in:

  9. Search for Andrew M. Weiner in:

Contributions

X.X. led the experiments, with assistance from Y.L., P.H.W., S.C., J.W. and D.E.L. X.X. analysed the data and performed the numerical simulations. X.X. and Y.X. designed the SiN microring layout with assistance from P.H.W. and J.W. Y.X. fabricated the microring. X.X. and A.M.W. wrote the manuscript. The project was organized and coordinated by A.M.W. and M.Q.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Andrew M. Weiner.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2015.137

Further reading

  • Laser cavity-soliton microcombs

    • Hualong Bao
    • , Andrew Cooper
    • , Maxwell Rowley
    • , Luigi Di Lauro
    • , Juan Sebastian Totero Gongora
    • , Sai T. Chu
    • , Brent E. Little
    • , Gian-Luca Oppo
    • , Roberto Morandotti
    • , David J. Moss
    • , Benjamin Wetzel
    • , Marco Peccianti
    •  & Alessia Pasquazi

    Nature Photonics (2019)

  • A microphotonic astrocomb

    • Ewelina Obrzud
    • , Monica Rainer
    • , Avet Harutyunyan
    • , Miles H. Anderson
    • , Junqiu Liu
    • , Michael Geiselmann
    • , Bruno Chazelas
    • , Stefan Kundermann
    • , Steve Lecomte
    • , Massimo Cecconi
    • , Adriano Ghedina
    • , Emilio Molinari
    • , Francesco Pepe
    • , François Wildi
    • , François Bouchy
    • , Tobias J. Kippenberg
    •  & Tobias Herr

    Nature Photonics (2019)

  • Integrated microwave photonics

    • David Marpaung
    • , Jianping Yao
    •  & José Capmany

    Nature Photonics (2019)

  • Temporal solitons in free-space femtosecond enhancement cavities

    • N. Lilienfein
    • , C. Hofer
    • , M. Högner
    • , T. Saule
    • , M. Trubetskov
    • , V. Pervak
    • , E. Fill
    • , C. Riek
    • , A. Leitenstorfer
    • , J. Limpert
    • , F. Krausz
    •  & I. Pupeza

    Nature Photonics (2019)

  • Photonic-chip-based frequency combs

    • Alexander L. Gaeta
    • , Michal Lipson
    •  & Tobias J. Kippenberg

    Nature Photonics (2019)