Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mode-locked dark pulse Kerr combs in normal-dispersion microresonators

Abstract

The generation of Kerr frequency combs in a coherently driven nonlinear microresonator is now extensively investigated more generally by the research community as a potentially portable technology for a variety of applications. Here, we report experiments in which dark pulse combs are formed in normal-dispersion microresonators with mode-interaction-assisted excitation, and mode-locking transitions are observed in the normal-dispersion regime. The mode-interaction-aided excitation of dark pulses appears to occur through a deterministic pathway, in sharp contrast to the situation for bright pulses in the anomalous dispersion region. The ability to mode-lock in the normal-dispersion regime increases the freedom in the microresonator design and may make it possible to extend Kerr comb generation into the visible, where material dispersion is likely to dominate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comb generation with a normal-dispersion SiN microring.
Figure 2: Comb characterization through line-by-line shaping.
Figure 3: Drop-port investigation of normal-dispersion combs.
Figure 4: Self-referenced cross-correlation of the dark pulse combs.
Figure 5: Simulation of dark pulse excitation for the microring in Fig. 3a .

Similar content being viewed by others

References

  1. Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  2. Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

    Article  ADS  Google Scholar 

  3. Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon. 4, 37–40 (2010).

    Article  ADS  Google Scholar 

  4. Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photon. 4, 41–45 (2010).

    Article  ADS  Google Scholar 

  5. Savchenkov, A. A. et al. Kerr combs with selectable central frequency. Nature Photon. 5, 293–296 (2011).

    Article  ADS  Google Scholar 

  6. Foster, M. A. et al. Silicon-based monolithic optical frequency comb source. Opt. Express 19, 14233–14239 (2011).

    Article  ADS  Google Scholar 

  7. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    Article  ADS  Google Scholar 

  8. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  9. Grudinin, I. S., Baumgartel, L. & Yu, N. Frequency comb from a microresonator with engineered spectrum. Opt. Express 20, 6604–6609 (2012).

    Article  ADS  Google Scholar 

  10. Wang, C. Y. et al. Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators. Nature Commun. 4, 1345 (2013).

    Article  ADS  Google Scholar 

  11. Ferdous, F. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photon. 5, 770–776 (2011).

    Article  ADS  Google Scholar 

  12. Papp, S. B. & Diddams, S. A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys. Rev. A 84, 053833 (2011).

    Article  ADS  Google Scholar 

  13. Wang, P.-H. et al. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. Opt. Express 20, 29284–29295 (2012).

    Article  ADS  Google Scholar 

  14. Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photon. 6, 480–487 (2012).

    Article  ADS  Google Scholar 

  15. Saha, K. et al. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express 21, 1335–1343 (2013).

    Article  ADS  Google Scholar 

  16. Del'Haye, P., Beha, K., Papp, S. B. & Diddams, S. A. Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys. Rev. Lett. 112, 043905 (2014).

    Article  ADS  Google Scholar 

  17. Herr, T. et al. Temporal solitons in optical microresonators. Nature Photon. 8, 145–152 (2014). .

    Article  ADS  Google Scholar 

  18. Herr, T. et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901 (2014).

    Article  ADS  Google Scholar 

  19. Lamont, M. R. E., Okawachi, Y. & Gaeta, A. L. Route to stabilized ultrabroadband microresonator-based frequency combs. Opt. Lett. 38, 3478–3481 (2013).

    Article  ADS  Google Scholar 

  20. Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 38, 37–39 (2013).

    Article  ADS  Google Scholar 

  21. Matsko, A. B. et al. Mode-locked Kerr frequency combs. Opt. Lett. 36, 2845–2847 (2011).

    Article  ADS  Google Scholar 

  22. Matsko, A. B., Savchenkov, A. A., Ilchenko, V. S., Seidel, D. & Maleki, L. Hard and soft excitation regimes of Kerr frequency combs. Phys. Rev. A 85, 023830 (2012).

    Article  ADS  Google Scholar 

  23. Matsko, A. B., Savchenkov, A. A. & Maleki, L. On excitation of breather solitons in an optical microresonator. Opt. Lett. 37, 4856–4858 (2012).

    Article  ADS  Google Scholar 

  24. Matsko, A. B., Savchenkov, A. A. & Maleki, L. Normal group-velocity dispersion Kerr frequency comb. Opt. Lett. 37, 43–45 (2012).

    Article  ADS  Google Scholar 

  25. Godey, C., Balakireva, I. V., Coillet, A. & Chembo, Y. K. Stability analysis of the spatiotemporal Lugiato–Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89, 063814 (2014).

    Article  ADS  Google Scholar 

  26. Ippen, E. P. Principles of passive mode locking. Appl. Phys. B 58, 159–170 (1994).

    Article  ADS  Google Scholar 

  27. Haus, H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).

    Article  ADS  Google Scholar 

  28. Rosanov, N. N. Spatial Hysteresis and Optical Patterns (Springer, 2002).

    Book  Google Scholar 

  29. Boardman, A. D. & Sukhorukov, A. P. Soliton-driven Photonics (Springer, 2001).

    Book  Google Scholar 

  30. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photon. 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  31. Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    Article  ADS  Google Scholar 

  32. Haelterman, M., Trillo, S. & Wabnitz, S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 91, 401–407 (1992).

    Article  ADS  Google Scholar 

  33. Coen, S. & Haelterman, M. Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber. Phys. Rev. Lett. 79, 4139–4142 (1997).

    Article  ADS  Google Scholar 

  34. Hansson, T., Modotto, D. & Wabnitz, S. Dynamics of the modulational instability in microresonator frequency combs. Phys. Rev. A 88, 023819 (2013).

    Article  ADS  Google Scholar 

  35. Coen, S. et al. Bistable switching induced by modulational instability in a normally dispersive all-fibre ring cavity. J. Opt. B 1, 36–42 (1999).

    Article  ADS  Google Scholar 

  36. Coillet, A. et al. Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators. IEEE Photon. J. 5, 6100409 (2013).

    Article  ADS  Google Scholar 

  37. Liang, W. et al. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett. 39, 2920–2923 (2014).

    Article  ADS  Google Scholar 

  38. Del'Haye, P., Arcizet, O., Gorodetsky, M. L., Holzwarth, R. & Kippenberg, T. J. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature Photon. 3, 529–533 (2009).

    Article  ADS  Google Scholar 

  39. Savchenkov, A. A. et al. Kerr frequency comb generation in overmoded resonators. Opt. Express 20, 27290–27298 (2012).

    Article  ADS  Google Scholar 

  40. Liu, Y. et al. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica 1, 137–144 (2014).

    Article  ADS  Google Scholar 

  41. Ramelow, S. et al. Strong polarization mode coupling in microresonators. Opt. Lett. 39, 5134–5137 (2014).

    Article  ADS  Google Scholar 

  42. Wang, P.-H. et al. Drop-port study of microresonator frequency combs: power transfer, spectra and time-domain characterization. Opt. Express 21, 22441–22452 (2013).

    Article  ADS  Google Scholar 

  43. Malaguti, S., Bellanca, G. & Trillo, S. Dispersive wave-breaking in coherently driven passive cavities. Opt. Lett. 39, 2475–2478 (2014).

    Article  ADS  Google Scholar 

  44. Lobanov, V. E., Lihachev, G., Kippenberg, T. J. & Gorodetsky, M. L. Frequency combs and platicons in optical microresonators with normal GVD. Opt. Express 23, 7713–7721 (2015).

    Article  ADS  Google Scholar 

  45. Weiner, A. M. et al. Experimental observation of the fundamental dark soliton in optical fibers. Phys. Rev. Lett. 61, 2445–2448 (1988).

    Article  ADS  Google Scholar 

  46. Hasegawa, A. & Matsumoto, M. Optical Solitons in Fibers (Springer, 2003).

    Book  Google Scholar 

  47. Huang, S.-W. et al. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett. 114, 053901 (2015).

    Article  ADS  Google Scholar 

  48. Riemensberger, J. et al. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt. Express 20, 27661–27669 (2012).

    Article  ADS  Google Scholar 

  49. Zhang, L. et al. Intra-cavity dispersion of microresonators and its engineering for octave-spanning Kerr frequency comb generation. IEEE J. Sel. Top. Quantum Electron. 20, 5900207 (2014).

    Article  Google Scholar 

  50. Miao, H., Leaird, D. E., Langrock, C., Fejer, M. M. & Weiner, A. M. Optical arbitrary waveform characterization via dual-quadrature spectral shearing interferometry. Opt. Express 17, 3381–3389 (2009).

    Article  ADS  Google Scholar 

  51. Del'Haye, P. et al. Phase steps and resonator detuning measurements in microresonator frequency combs. Nature Commun. 6, 5668 (2015).

    Article  ADS  Google Scholar 

  52. Weiner, A. M. Ultrafast Optics (Wiley, 2009).

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation under grants ECCS-1102110 and ECCS-1126314, by the Air Force Office of Scientific Research under grant FA9550-12-1-0236 and by the DARPA PULSE program through grant W31P40-13-1-0018 from AMRDEC. The authors thank C.R. Menyuk and G. D'Aguanno for discussions and the reviewers for their comments.

Author information

Authors and Affiliations

Authors

Contributions

X.X. led the experiments, with assistance from Y.L., P.H.W., S.C., J.W. and D.E.L. X.X. analysed the data and performed the numerical simulations. X.X. and Y.X. designed the SiN microring layout with assistance from P.H.W. and J.W. Y.X. fabricated the microring. X.X. and A.M.W. wrote the manuscript. The project was organized and coordinated by A.M.W. and M.Q.

Corresponding author

Correspondence to Andrew M. Weiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, X., Xuan, Y., Liu, Y. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photon 9, 594–600 (2015). https://doi.org/10.1038/nphoton.2015.137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing