Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Status and prospects for ternary organic photovoltaics

Subjects

Abstract

In the past few years, ternary organic solar cells (OSCs) featuring multiple donor or acceptor materials in the active layer have emerged as a promising structure to simultaneously improve all solar cell parameters compared with traditional binary OSCs. Power conversion efficiencies around 10% have been achieved for conjugated polymers in a ternary structure, showing the great potential of ternary systems. In this review, we summarize progress in developing ternary OSCs and discuss many of the designs, chemistries and mechanisms that have been investigated. We conclude by highlighting the challenges and future directions for further development in the field of ternary blend OSCs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structures of different PSCs.
Figure 2
Figure 3: Operating mechanism of ternary blend PSCs.
Figure 4: J–V curves of representative ternary PSCs.
Figure 5: Morphology and VOC changes for ternary PSCs.

References

  1. 1

    Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 107, 1324–1338 (2007).

    Google Scholar 

  2. 2

    Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nature Photon. 6, 153–161 (2012).

    ADS  Google Scholar 

  3. 3

    Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    ADS  Google Scholar 

  4. 4

    He, Z. et al. Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photon. 9, 174–179 (2015).

    ADS  Google Scholar 

  5. 5

    Liu, Y. et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Commun. 5, 5293 (2014).

    ADS  Google Scholar 

  6. 6

    Kan, B. et al. A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. J. Am. Chem. Soc. 137, 3886–3893 (2015).

    Google Scholar 

  7. 7

    Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185, (1986).

    ADS  Google Scholar 

  8. 8

    Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).

    ADS  Google Scholar 

  9. 9

    Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices. Synth. Met. 59, 333–352 (1993).

    Google Scholar 

  10. 10

    Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    ADS  Google Scholar 

  11. 11

    Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    ADS  Google Scholar 

  12. 12

    Collins, B. A., Tumbleston, J. R. & Ade, H. Miscibility, crystallinity, and phase development in P3HT/PCBM solar cells: toward an enlightened understanding of device morphology and stability. J. Phys. Chem. Lett. 2, 3135–3145 (2011).

    Google Scholar 

  13. 13

    Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Mater. 6, 497–500 (2007).

    ADS  Google Scholar 

  14. 14

    Lee, J. K. et al. Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 130, 3619–3623 (2008).

    Google Scholar 

  15. 15

    Li, G. et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater. 4, 864–868 (2005).

    ADS  Google Scholar 

  16. 16

    Svensson, M. et al. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv. Mater. 15, 988–991 (2003).

    Google Scholar 

  17. 17

    Cabanetos, C. et al. Linear side chains in benzo[1, 2-b:4, 5-b′]dithiophene–thieno[3, 4-c]pyrrole-4, 6-dione polymers direct self-assembly and solar cell performance. J. Am. Chem. Soc. 135, 4656–4659 (2013).

    Google Scholar 

  18. 18

    Price, S. C., Stuart, A. C., Yang, L., Zhou, H. & You, W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer−fullerene solar cells. J. Am. Chem. Soc. 133, 4625–4631 (2011).

    Google Scholar 

  19. 19

    Zhou, H., Yang, L., Price, S. C., Knight, K. J. & You, W. Enhanced photovoltaic performance of low-bandgap polymers with deep LUMO levels. Angew. Chem. Int. Ed. 49, 7992–7995 (2010).

    Google Scholar 

  20. 20

    Guo, X. et al. Polymer solar cells with enhanced fill factors. Nature Photon. 7, 825–833 (2013).

    ADS  Google Scholar 

  21. 21

    Liang, Y. et al. For the bright future — bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 (2010).

    Google Scholar 

  22. 22

    Liang, Y. et al. Development of new semiconducting polymers for high performance solar cells. J. Am. Chem. Soc. 131, 56–57 (2008).

    Google Scholar 

  23. 23

    Liang, Y. et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J. Am. Chem. Soc. 131, 7792–7799 (2009).

    Google Scholar 

  24. 24

    Lu, L., Xu, T., Jung, I. H. & Yu, L. Match the interfacial energy levels between hole transport layer and donor polymer to achieve high solar cell performance. J. Phys. Chem. C 118, 22834–22839 (2014).

    Google Scholar 

  25. 25

    Sun, Y. et al. Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer. Adv. Mater. 23, 2226–2230 (2011).

    Google Scholar 

  26. 26

    Irwin, M. D., Buchholz, D. B., Hains, A. W., Chang, R. P. H. & Marks, T. J. p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl Acad. Sci. USA 105, 2783–2787 (2008).

    ADS  Google Scholar 

  27. 27

    Sun, Y., Seo, J. H., Takacs, C. J., Seifter, J. & Heeger, A. J. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv. Mater. 23, 1679–1683 (2011).

    Google Scholar 

  28. 28

    You, J. et al. Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells. Adv. Mater. 24, 5267–5272 (2012).

    Google Scholar 

  29. 29

    Jasieniak, J. J., Seifter, J., Jo, J., Mates, T. & Heeger, A. J. A solution-processed MoOx anode interlayer for use within organic photovoltaic devices. Adv. Funct. Mater. 22, 2594–2605 (2012).

    Google Scholar 

  30. 30

    Choi, H. et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nature Photon. 7, 732–738 (2013).

    ADS  Google Scholar 

  31. 31

    Lu, L., Luo, Z., Xu, T. & Yu, L. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett. 13, 59–64 (2013).

    ADS  Google Scholar 

  32. 32

    You, J., Dou, L., Hong, Z., Li, G. & Yang, Y. Recent trends in polymer tandem solar cells research. Prog. Polym. Sci. 38, 1909–1928 (2013).

    Google Scholar 

  33. 33

    Lu, L., Xu, T., Chen, W., Landry, E. S. & Yu, L. Ternary blend polymer solar cells with enhanced power conversion efficiency. Nature Photon. 8, 716–722 (2014).

    ADS  Google Scholar 

  34. 34

    Zhang, Y. et al. Synergistic effect of polymer and small molecules for high-performance ternary organic solar cells. Adv. Mater. 27, 1071–1076 (2015).

    Google Scholar 

  35. 35

    Cheng, P., Li, Y. & Zhan, X. Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy Environ. Sci. 7, 2005–2011 (2014).

    Google Scholar 

  36. 36

    Honda, S., Nogami, T., Ohkita, H., Benten, H. & Ito, S. Improvement of the light-harvesting efficiency in polymer/fullerene bulk heterojunction solar cells by interfacial dye modification. ACS Appl. Mater. Interfaces 1, 804–810 (2009).

    Google Scholar 

  37. 37

    Itskos, G. et al. Optical properties of organic semiconductor blends with near-infrared quantum-dot sensitizers for light harvesting applications. Adv. Energy Mater. 1, 802–812 (2011).

    Google Scholar 

  38. 38

    Yang, L., Yan, L. & You, W. Organic solar cells beyond one pair of donor-acceptor: ternary blends and more. J. Phys. Chem. Lett. 4, 1802–1810 (2013).

    Google Scholar 

  39. 39

    Ameri, T., Khoram, P., Min, J. & Brabec, C. J. Organic ternary solar cells: a review. Adv. Mater. 25, 4245–4266 (2013).

    Google Scholar 

  40. 40

    Chen, Y.-C., Hsu, C.-Y., Lin, R. Y.-Y., Ho, K.-C. & Lin, J. T. Materials for the active layer of organic photovoltaics: ternary solar cell approach. ChemSusChem 6, 20–35 (2013).

    Google Scholar 

  41. 41

    Savoie, B. M., Dunaisky, S., Marks, T. J. & Ratner, M. A. The scope and limitations of ternary blend organic photovoltaics. Adv. Energy Mater. 5, 1400891 (2015).

    Google Scholar 

  42. 42

    Yang, Y. et al. High-performance multiple-donor bulk heterojunction solar cells. Nature Photon. 9, 190–198 (2015).

    ADS  Google Scholar 

  43. 43

    Ameri, T. et al. Performance enhancement of the P3HT/PCBM solar cells through NIR sensitization using a small-bandgap polymer. Adv. Energy Mater. 2, 1198–1202 (2012).

    Google Scholar 

  44. 44

    Huang, J.-S. et al. Polymer bulk heterojunction solar cells employing Forster resonance energy transfer. Nature Photon. 7, 479–485 (2013).

    ADS  Google Scholar 

  45. 45

    Yang, L., Zhou, H., Price, S. C. & You, W. Parallel-like bulk heterojunction polymer solar cells. J. Am. Chem. Soc. 134, 5432–5435 (2012).

    Google Scholar 

  46. 46

    Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. J. Am. Chem. Soc. 134, 9074–9077 (2012).

    Google Scholar 

  47. 47

    Street, R. A., Davies, D., Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Origin of the tunable open-circuit voltage in ternary blend bulk heterojunction organic solar cells. J. Am. Chem. Soc. 135, 986–989 (2013).

    Google Scholar 

  48. 48

    Kim, Y. et al. Effect of electron-transport polymer addition to polymer/fullerene blend solar cells. Synth. Met. 152, 105–108 (2005).

    Google Scholar 

  49. 49

    Ma, W., Kim, J. Y., Lee, K. & Heeger, A. J. Effect of the molecular weight of poly(3-hexylthiophene) on the morphology and performance of polymer bulk heterojunction solar cells. Macromol. Rapid Commun. 28, 1776–1780 (2007).

    Google Scholar 

  50. 50

    Lessard, B. H. et al. Bis(tri-n-hexylsilyl oxide) silicon phthalocyanine: a unique additive in ternary bulk heterojunction organic photovoltaic devices. ACS Appl. Mater. Interfaces 6, 15040–15051 (2014).

    Google Scholar 

  51. 51

    Lim, B., Bloking, J. T., Ponec, A., McGehee, M. D. & Sellinger, A. Ternary bulk heterojunction solar cells: addition of soluble NIR dyes for photocurrent generation beyond 800 nm. ACS Appl. Mater. Interfaces 6, 6905–6913 (2014).

    Google Scholar 

  52. 52

    Honda, S., Ohkita, H., Benten, H. & Ito, S. Multi-colored dye sensitization of polymer/fullerene bulk heterojunction solar cells. Chem. Commun. 46, 6596–6598 (2010).

    Google Scholar 

  53. 53

    Kokil, A. et al. Improved performances in polymer BHJ solar cells through frontier orbital tuning of small molecule additives in ternary blends. ACS Appl. Mater. Interfaces 6, 9920–9924 (2014).

    Google Scholar 

  54. 54

    Yun, M. H. et al. Enhanced performance of polymer bulk heterojunction solar cells employing multifunctional iridium complexes. J. Mater. Chem. C 2, 10195–10200 (2014).

    Google Scholar 

  55. 55

    Huang, J.-H., Velusamy, M., Ho, K.-C., Lin, J.-T. & Chu, C.-W. A ternary cascade structure enhances the efficiency of polymer solar cells. J. Mater. Chem. 20, 2820–2825 (2010).

    Google Scholar 

  56. 56

    Chang, J.-K. et al. Bridging donor–acceptor energy offset using organic dopants as energy ladders to improve open-circuit voltages in bulk-heterojunction solar cells. Org. Electron. 15, 3458–3464 (2014).

    Google Scholar 

  57. 57

    An, Q. et al. Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy. ACS Appl. Mater. Interfaces 7, 3691–3698 (2015).

    Google Scholar 

  58. 58

    Ye, L. et al. Ternary bulk heterojunction photovoltaic cells composed of small molecule donor additive as cascade material. J. Phys. Chem. C 118, 20094–20099 (2014).

    Google Scholar 

  59. 59

    Koppe, M. et al. Near IR sensitization of organic bulk heterojunction solar cells: towards optimization of the spectral response of organic solar cells. Adv. Funct. Mater. 20, 338–346 (2010).

    Google Scholar 

  60. 60

    Ameri, T. et al. IR sensitization of an indene-C60 bisadduct (ICBA) in ternary organic solar cells. Energy Environ. Sci. 6, 1796–1801 (2013).

    Google Scholar 

  61. 61

    Koppe, M. et al. Charge carrier dynamics in a ternary bulk heterojunction system consisting of P3HT, fullerene, and a low bandgap polymer. Adv. Energy Mater. 3, 949–958 (2013).

    Google Scholar 

  62. 62

    Kroon, R. et al. A new tetracyclic lactam building block for thick, broad-bandgap photovoltaics. J. Am. Chem. Soc. 136, 11578–11581 (2014).

    Google Scholar 

  63. 63

    Lu, L., Chen, W., Xu, T. & Yu, L. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes. Nature Commun. 6, 7327 (2015).

    ADS  Google Scholar 

  64. 64

    Yao, K., Xu, Y.-X., Li, F., Wang, X. & Zhou, L. A simple and universal method to increase light absorption in ternary blend polymer solar cells based on ladder-type polymers. Adv. Opt. Mater. 3, 321–327 (2015).

    Google Scholar 

  65. 65

    Liu, C. et al. Efficiency enhancement of inverted organic solar cells by introducing PFDTBT quantum dots into PCDTBT:PC71BM active layer. Org. Electron. 15, 2632–2638 (2014).

    Google Scholar 

  66. 66

    Liu, S. et al. Enhanced efficiency of polymer solar cells by adding a high-mobility conjugated polymer. Energy Environ. Sci. 8, 1463–1470 (2015).

    Google Scholar 

  67. 67

    Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 133, 14534–14537 (2011).

    Google Scholar 

  68. 68

    Ko, S.-J. et al. Improved performance in polymer solar cells using mixed PC61BM/PC71BM acceptors. Adv. Energy Mater. 5, 1401687 (2015).

    Google Scholar 

  69. 69

    Ojala, A. et al. Parallel bulk-heterojunction solar cell by electrostatically driven phase separation. Adv. Mater. 23, 5398–5403 (2011).

    Google Scholar 

  70. 70

    Xiao, X. et al. Small-molecule photovoltaics based on functionalized squaraine donor blends. Adv. Mater. 24, 1956–1960 (2012).

    Google Scholar 

  71. 71

    Goh, T. et al. Coevaporated bisquaraine inverted solar cells: enhancement due to energy transfer and open circuit voltage control. ACS Photon. 2, 86–95 (2015).

    Google Scholar 

  72. 72

    Griffith, O. L. & Forrest, S. R. Exciton management in organic photovoltaic multidonor energy cascades. Nano Lett. 14, 2353–2358 (2014).

    ADS  Google Scholar 

  73. 73

    Cnops, K. et al. 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nature Commun. 5, 3406 (2014).

    ADS  Google Scholar 

  74. 74

    You, J. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Commun. 4, 1446 (2013).

    ADS  Google Scholar 

  75. 75

    Chen, C.-C. et al. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv. Mater. 26, 5670–5677 (2014).

    Google Scholar 

  76. 76

    Honda, S., Ohkita, H., Benten, H. & Ito, S. Selective dye loading at the heterojunction in polymer/fullerene solar cells. Adv. Energy Mater. 1, 588–598 (2011).

    Google Scholar 

  77. 77

    Honda, S., Yokoya, S., Ohkita, H., Benten, H. & Ito, S. Light-harvesting mechanism in polymer/fullerene/dye ternary blends studied by transient absorption spectroscopy. J. Phys. Chem. C 115, 11306–11317 (2011).

    Google Scholar 

  78. 78

    Xu, H., Ohkita, H., Hirata, T., Benten, H. & Ito, S. Near-IR dye sensitization of polymer blend solar cells. Polymer 55, 2856–2860 (2014).

    Google Scholar 

  79. 79

    Ameri, T. et al. Morphology analysis of near IR sensitized polymer/fullerene organic solar cells by implementing low bandgap heteroanalogue C-/Si-PCPDTBT. J. Mater. Chem. A 2, 19461–19472 (2014).

    Google Scholar 

  80. 80

    Bechara, R. et al. Efficiency enhancement of polymer photovoltaic devices using thieno-thiophene based copolymers as nucleating agents for polythiophene crystallization. Appl. Phys. Lett. 93, 013306 (2008).

    ADS  Google Scholar 

  81. 81

    Campoy-Quiles, M., Kanai, Y., El-Basaty, A., Sakai, H. & Murata, H. Ternary mixing: a simple method to tailor the morphology of organic solar cells. Org. Electron. 10, 1120–1132 (2009).

    Google Scholar 

  82. 82

    Kastner, C., Rathgeber, S., Egbe, D. A. M. & Hoppe, H. Improvement of photovoltaic performance by ternary blending of amorphous and semi-crystalline polymer analogues with PCBM. J. Mater. Chem. A 1, 3961–3969 (2013).

    Google Scholar 

  83. 83

    Chang, S.-Y. et al. Enhancing the efficiency of low bandgap conducting polymer bulk heterojunction solar cells using P3HT as a morphology control agent. J. Mater. Chem. A 1, 2447–2452 (2013).

    Google Scholar 

  84. 84

    Lin, R. et al. Performance improvement of low bandgap polymer bulk heterojunction solar cells by incorporating P3HT. Org. Electron. 15, 2837–2846 (2014).

    Google Scholar 

  85. 85

    Scharber, M. C. et al. Design rules for donors in bulk-heterojunction solar cells — towards 10 % energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Google Scholar 

  86. 86

    Khlyabich, P. P., Rudenko, A. E., Street, R. A. & Thompson, B. C. Influence of polymer compatibility on the open-circuit voltage in ternary blend bulk heterojunction solar cells. ACS Appl. Mater. Interfaces 6, 9913–9919 (2014).

    Google Scholar 

  87. 87

    Kang, H. et al. Effect of fullerene tris-adducts on the photovoltaic performance of P3HT:fullerene ternary blends. ACS Appl. Mater. Interfaces 5, 4401–4408 (2013).

    Google Scholar 

  88. 88

    Li, H., Zhang, Z.-G., Li, Y. & Wang, J. Tunable open-circuit voltage in ternary organic solar cells. Appl. Phys. Lett. 101, 163302 (2012).

    ADS  Google Scholar 

  89. 89

    Kouijzer, S., Li, W., Wienk, M. M. & Janssen, R. A. J. Charge transfer state energy in ternary bulk-heterojunction polymer–fullerene solar cells. J. Photon. Energy. 5, 057203 (2014).

    Google Scholar 

  90. 90

    Xu, H., Ohkita, H., Benten, H. & Ito, S. Open-circuit voltage of ternary blend polymer solar cells. Jpn. J. Appl. Phys. 53, 01AB10 (2014).

    Google Scholar 

  91. 91

    Lefrançois, A. et al. Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells. Sci. Rep. 5, 7768 (2015).

    Google Scholar 

  92. 92

    Ferenczi, T. A. M. et al. Organic semiconductor:insulator polymer ternary blends for photovoltaics. Adv. Mater. 23, 4093–4097 (2011).

    Google Scholar 

Download references

Acknowledgements

L. L. and L.Y. gratefully acknowledge financial support from US National Science Foundation (grants NSF CHE-1229089 and DMR-1263006), US Air Force Office of Scientific Research and the NIST CHiMaD program. M.A.K. and W.Y. were supported by a National Science Foundation CAREER award (DMR-0954280) and the Office of Naval Research (grant N000141410221).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wei You or Luping Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Kelly, M., You, W. et al. Status and prospects for ternary organic photovoltaics. Nature Photon 9, 491–500 (2015). https://doi.org/10.1038/nphoton.2015.128

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing