Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale

Abstract

Optical modulators encode electrical signals to the optical domain and thus constitute a key element in high-capacity communication links1,2. Ideally, they should feature operation at the highest speed with the least power consumption on the smallest footprint, and at low cost3. Unfortunately, current technologies fall short of these criteria4. Recently, plasmonics has emerged as a solution offering compact and fast devices5,6,7. Yet, practical implementations have turned out to be rather elusive. Here, we introduce a 70 GHz all-plasmonic Mach–Zehnder modulator that fits into a silicon waveguide of 10 μm length. This dramatic reduction in size by more than two orders of magnitude compared with photonic Mach–Zehnder modulators results in a low energy consumption of 25 fJ per bit up to the highest speeds. The technology suggests a cheap co-integration with electronics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Plasmonic circuit realizing the Mach–Zehnder modulator (MZM).
Figure 2: Enhanced nonlinear interaction.
Figure 3: Electro-optical frequency response.
Figure 4: Experimental high-speed set-up.

References

  1. Beppu, S., Kasai, K., Yoshida, M. & Nakazawa, M. 2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz. Opt. Express 23, 4960–4969 (2015).

    ADS  Article  Google Scholar 

  2. Dong, P. et al. Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters. IEEE J. Sel. Top. Quantum Electron. 20, 150–157 (2014).

    ADS  Article  Google Scholar 

  3. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photon. 4, 518–526 (2010).

    ADS  Article  Google Scholar 

  4. Kinsey, N., Ferrera, M., Shalaev, V. M. & Boltasseva, A. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials. J. Opt. Soc. Am. B 32, 121–142 (2015).

    ADS  Article  Google Scholar 

  5. Cai, W., White, J. S. & Brongersma, M. L. Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett. 9, 4403–4411 (2009).

    ADS  Article  Google Scholar 

  6. Maier, S. A. et al. Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001).

    Article  Google Scholar 

  7. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    ADS  Article  Google Scholar 

  8. Xu, H. et al. High-speed silicon modulator with band equalization. Opt. Lett. 39, 4839–4842 (2014).

    ADS  Article  Google Scholar 

  9. Liao, L. et al. 40 Gbit/s silicon optical modulator for high-speed applications. Electron. Lett. 43, 1196–1197 (2007).

    Article  Google Scholar 

  10. Green, W. M., Rooks, M. J., Sekaric, L. & Vlasov, Y. A. Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator. Opt. Express 15, 17106–17113 (2007).

    ADS  Article  Google Scholar 

  11. Thomson, D. J. et al. 50-Gb/s silicon optical modulator. IEEE Photon. Technol. Lett. 24, 234–236 (2012).

    ADS  Article  Google Scholar 

  12. Leuthold, J. et al. Silicon–organic hybrid electro-optical devices. IEEE J. Sel. Top. Quantum Electron 19, 114–126 (2013).

    ADS  Article  Google Scholar 

  13. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    ADS  Article  Google Scholar 

  14. Timurdogan, E. et al. An ultralow power athermal silicon modulator. Nature Commun. 5, 4008 (2014).

    ADS  Article  Google Scholar 

  15. Liu, J. et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nature Photon. 2, 433–437 (2008).

    ADS  Article  Google Scholar 

  16. Tang, Y., Peters, J. D. & Bowers, J. E. Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 µm transmission. Opt. Express 20, 11529–11535 (2012).

    ADS  Article  Google Scholar 

  17. Dong, P., Xie, C., Chen, L., Fontaine, N. K. & Chen, Y.-K. Experimental demonstration of microring quadrature phase-shift keying modulators. Opt. Lett. 37, 1178–1180 (2012).

    ADS  Article  Google Scholar 

  18. Pile, D. F. P. et al. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87, 261114 (2005).

    ADS  Article  Google Scholar 

  19. Dionne, J. A., Diest, K., Sweatlock, L. A. & Atwater, H. A. PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009).

    ADS  Article  Google Scholar 

  20. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

    ADS  Article  Google Scholar 

  21. Zhu, S., Lo, G. Q. & Kwong, D. L. Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators. Opt. Express 18, 27802–27819 (2010).

    ADS  Article  Google Scholar 

  22. Melikyan, A. et al. High-speed plasmonic phase modulators. Nature Photon. 8, 229–233 (2014).

    ADS  Article  Google Scholar 

  23. Elder, D. L., Benight, S. J., Song, J., Robinson, B. H. & Dalton, L. R. Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores. Chem. Mater. 26, 872–874 (2014).

    Article  Google Scholar 

  24. Sun, S.-S. & Dalton, L. R. Introduction to Organic Electronic and Optoelectronic Materials and Devices (CRC, 2008).

    Google Scholar 

  25. Chang, F., Onohara, K. & Mizuochi, T. Forward error correction for 100 G transport networks. IEEE Commun. Mag. 48, S48–S55 (2010).

    Article  Google Scholar 

  26. Miller, D. A. B. Energy consumption in optical modulators for interconnects. Opt. Express 20, A293–A308 (2012).

    ADS  Article  Google Scholar 

  27. Lee, H. W. et al. Nanoscale conducting oxide PlasMOStor. Nano Lett. 14, 6463–6468 (2014).

    ADS  Article  Google Scholar 

  28. Han, Z. et al. On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides. Nano Lett. 15, 476–480 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was carried out in the Binnig and Rohrer Nanotechnology Center as well as in the FIRST lab cleanroom facility of ETH Zurich. EU project NAVOLCHI (288869) and the National Science Foundation (grant DMR-1303080) are acknowledged for partial funding of this project.

Author information

Authors and Affiliations

Authors

Contributions

C.H. conceived the concept, designed and fabricated the modulator, designed and performed the experiments, analysed the data and wrote the paper. W.H. installed and optimized the poling process, fabricated the devices, designed and performed the experiments and evaluated the data. Y.F. conceived the concept, designed the fabrication process, fabricated the modulator and wrote the manuscript. J.N. conceived the concept, designed the modulator and wrote the manuscript. A.M. conceived the concept. D.L.E. and L.R.D. developed and synthesized the DLD-164 nonlinear chromophore. B.B., A.J. and D.H. performed the data transmission experiment. Y.S. performed the bandwidth characterization, retrieved the electrical properties and wrote the manuscript. U.K. and C.H. performed and evaluated the ellipsometry experiment. A.E., F.D. and L.J. provided support for the design of the modulator. M.K. developed the concept. C.H. and J.L. conceived the concept, designed the experiment and wrote the manuscript.

Corresponding authors

Correspondence to C. Haffner or J. Leuthold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1187 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haffner, C., Heni, W., Fedoryshyn, Y. et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photon 9, 525–528 (2015). https://doi.org/10.1038/nphoton.2015.127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing