Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Room-temperature lasing in a single nanowire with quantum dots

Abstract

Semiconductor nanowire lasers are promising as ultrasmall, highly efficient coherent light emitters in the fields of nanophotonics, nano-optics and nanobiotechnology1,2. Although there have been several demonstrations of nanowire lasers using homogeneous bulk gain materials3,4,5,6,7,8,9,10,11,12,13,14 or multi-quantum-wells/disks15,16,17, it is crucial to incorporate lower-dimensional quantum nanostructures into the nanowire to achieve superior device performance in relation to threshold current, differential gain, modulation bandwidth and temperature sensitivity. The quantum dot is a useful and essential nanostructure that can meet these requirements18. However, difficulties in forming stacks of quantum dots in a single nanowire hamper the realization of lasing operation. Here, we demonstrate room-temperature lasing of a single nanowire containing 50 quantum dots by properly designing the nanowire cavity and tailoring the emission energy of each dot to enhance the optical gain. Our demonstration paves the way toward ultrasmall lasers with extremely low power consumption for integrated photonic systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural properties of nanowires with stacked quantum dots.
Figure 2: Low-temperature (7 K) optical characteristics.
Figure 3: Low-temperature lasing characteristics.
Figure 4: Room-temperature lasing characteristics.

Similar content being viewed by others

References

  1. Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    Article  ADS  Google Scholar 

  2. Cui, Y., Wei, Q. Q., Park, H. K. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    Article  ADS  Google Scholar 

  3. Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    Article  ADS  Google Scholar 

  4. Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002).

    Article  ADS  Google Scholar 

  5. Xu, H. et al. Single-mode lasing of GaN nanowire-pairs. Appl. Phys. Lett. 101, 113106 (2012).

    Article  ADS  Google Scholar 

  6. Ding, J. X. et al. Lasing in ZnS nanowires grown on anodic aluminum oxide templates. Appl. Phys. Lett. 85, 2361–2363 (2004).

    Article  ADS  Google Scholar 

  7. Liu, Z. et al. Dyamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett. 13, 4945–4950 (2013).

    Article  ADS  Google Scholar 

  8. Chin, A. H. et al. Near-infrared semiconductor subwavelength-wire lasers. Appl. Phys. Lett. 88, 163115 (2006).

    Article  ADS  Google Scholar 

  9. Hua, B., Motohisa, J., Kobayashi, Y., Hara, S. & Fukui, T. Single GaAs/GaAsP coaxial core–shell nanowire lasers. Nano Lett. 9, 112–116 (2009).

    Article  ADS  Google Scholar 

  10. Chen, R. et al. Nanolasers grown on silicon. Nature Photon. 5, 170–175 (2011).

    Article  ADS  Google Scholar 

  11. Lu, F. et al. Nanolasers grown on silicon-based MOSFETs. Opt. Express 20, 12171–12176 (2012).

    Article  ADS  Google Scholar 

  12. Saxena, D. et al. Optically pumped room-temperature GaAs nanowire lasers. Nature Photon. 7, 963–968 (2013).

    Article  ADS  Google Scholar 

  13. Mayer, B. et al. Lasing from individual GaAs–AlGaAs core–shell nanowires up to room temperature. Nature Commun. 4, 2931 (2013).

    Article  ADS  Google Scholar 

  14. Gao, Q. et al. Selective-area epitaxy of pure Wurzite InP nanowires: high quantum efficiency and room-temperature lasing. Nano Lett. 14, 5206–5211 (2014).

    Article  ADS  Google Scholar 

  15. Qian, F. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater. 7, 701–706 (2008).

    Article  ADS  Google Scholar 

  16. Frost, T. et al. Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon. Nano Lett. 14, 4535–4541 (2014).

    Article  ADS  Google Scholar 

  17. Li, K. H., Liu, X., Wang, Q., Zhao, S. & Mi, Z. Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nature Nanotech. 10, 140–144 (2015).

    Article  ADS  Google Scholar 

  18. Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982).

    Article  ADS  Google Scholar 

  19. Otsubo, K. et al. Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments. Jpn J. Appl. Phys. 43, L1124–L1126 (2004).

    Article  ADS  Google Scholar 

  20. Buckley, S., Rivoire, K. & Vučković, J. Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012).

    Article  ADS  Google Scholar 

  21. Luque, A. & Martí, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997).

    Article  ADS  Google Scholar 

  22. Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  ADS  Google Scholar 

  23. Ertekin, E., Greaney, P. A., Chrzan, D. C. & Sands, T. D. Equilibrium limits of coherency in strained nanowire heterostructures. J. Appl. Phys. 97, 114325 (2005).

    Article  ADS  Google Scholar 

  24. Glas, F. Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302 (2006).

    Article  ADS  Google Scholar 

  25. Wu, Y., Fan, R. & Yang, P. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2, 83–86 (2002).

    Article  ADS  Google Scholar 

  26. Björk, M. T. et al. One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002).

    Article  ADS  Google Scholar 

  27. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002).

    Article  ADS  Google Scholar 

  28. Nilsson, H. A., Thelander, C., Fröberg, L. E., Wagner, J. B. & Samuelson, L. Nanowire-based multiple quantum dot memory. Appl. Phys. Lett. 89, 163101 (2006).

    Article  ADS  Google Scholar 

  29. Yang, L. et al. Fabry–Pérot microcavity modes observed in the micro-photoluminescence spectra of the single nanowire with InGaAs/GaAs heterostructure. Opt. Express 17, 9337–9346 (2009).

    Article  ADS  Google Scholar 

  30. Tateno, K., Zhang, G., Gotoh, H. & Sogawa, T. VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures. Nano Lett. 12, 2888–2893 (2012).

    Article  ADS  Google Scholar 

  31. Tatebayashi, J. et al. Site-controlled formation of InAs/GaAs quantum-dot-in-nanowires for single photon emitters. Appl. Phys. Lett. 100, 263101 (2012).

    Article  ADS  Google Scholar 

  32. Tatebayashi, J. et al. Highly uniform, multi-stacked InGaAs/GaAs quantum dots embedded in a GaAs nanowire. Appl. Phys. Lett. 105, 103104 (2014).

    Article  ADS  Google Scholar 

  33. Makhonin, M. N. et al. Homogeneous array of nanowire-embedded quantum light emitters. Nano Lett. 13, 861–865 (2013).

    Article  ADS  Google Scholar 

  34. Mi, Z. & Bhattacharya, P. Molecular-beam epitaxial growth and characteristics of highly uniform InAs/GaAs quantum dot layers. J. Appl. Phys. 98, 023510 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project for Developing Innovation Systems of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Japan Society for the Promotion of Science (JSPS) through its Funding Program for World-Leading Innovation R&D on Science and Technology (FIRST Program) and the New Energy and Industrial Technology Development Organization (NEDO). The authors thank M. Arita, M. Holmes, M. Nishioka and S. Ishida for discussions and technical support.

Author information

Authors and Affiliations

Authors

Contributions

J.T. and Y.A. conceived and designed the experiments. J.T. grew the NWQD samples. J.T., with support from J.H. and S.I., carried out the simulations and analyses. J.T., with assistance from Y.O., performed optical characterization of the NWQDs. J.T., with assistance from J.H. and S.K., carried out device characterization of the NWQD lasers. All authors contributed to interpretation of the data and preparation of the manuscript. J.T. and Y.A. wrote the paper. Y.A. supervised the entire project.

Corresponding authors

Correspondence to Jun Tatebayashi or Yasuhiko Arakawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatebayashi, J., Kako, S., Ho, J. et al. Room-temperature lasing in a single nanowire with quantum dots. Nature Photon 9, 501–505 (2015). https://doi.org/10.1038/nphoton.2015.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing