Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction between light and highly confined hypersound in a silicon photonic nanowire

An Erratum to this article was published on 28 May 2015

This article has been updated

Abstract

In the past decade there has been a surge in research at the boundary between photonics and phononics. Most efforts have centred on coupling light to motion in a high-quality optical cavity, typically geared towards manipulating the quantum state of a mechanical oscillator. It was recently predicted that the strength of the light–sound interaction would increase drastically in nanoscale silicon photonic wires. Here we demonstrate, for the first time, such a giant overlap between near-infrared light and gigahertz sound co-localized in a small-core silicon wire. The wire is supported by a tiny pillar to block the path for external phonon leakage, trapping 10 GHz phonons in an area of less than 0.1 μm2. Because our geometry can also be studied in microcavities, it paves the way for complete fusion between the fields of cavity optomechanics and Brillouin scattering. The results bode well for the realization of optically driven lasers/sasers, isolators and comb generators on a densely integrated silicon chip.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A silicon wire on a pillar as an acoustic phonon cavity.
Figure 2: Experimental characterization of photon–phonon coupling.
Figure 3: Analysis of Brillouin gain and phononic resonance frequency.
Figure 4: Study of the mechanical quality factor and intrinsic photon–phonon overlap.

Similar content being viewed by others

Change history

  • 08 May 2015

    In the version of this Article originally published, in the expression for Leff on page 200 the exponential should have contained a minus sign and the expression should have read Leff = (1 – exp(−α L))/α. This has been corrected in the online versions.

References

  1. Boyd, R. Nonlinear Optics 3rd edn (Elsevier, 2008).

    Google Scholar 

  2. Chiao, R., Townes, C. & Stoicheff, B. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 12, 593–595 (1964).

    ADS  Google Scholar 

  3. Shelby, R., Levenson, M. & Bayer, P. Resolved forward Brillouin scattering in optical fibers. Phys. Rev. Lett. 54, 939–942 (1985).

    Article  ADS  Google Scholar 

  4. Gorishnyy, T., Ullal, C., Maldovan, M., Fytas, G. & Thomas, E. Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005).

    Article  ADS  Google Scholar 

  5. Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).

    Article  ADS  Google Scholar 

  6. Zhu, Z., Gauthier, D. & Boyd, R. Stored light in an optical fiber via stimulated Brillouin scattering. Science 318, 1748–1750 (2007).

    Article  ADS  Google Scholar 

  7. Thévenaz, L. Slow and fast light in optical fibres. Nature Photon. 2, 474–481 (2008).

    Article  ADS  Google Scholar 

  8. Grudinin, I., Matsko, A. & Maleki, L. Brillouin lasing with a CaF2 whispering gallery mode resonator. Phys. Rev. Lett. 102, 043902 (2009).

    Article  ADS  Google Scholar 

  9. Tomes, M. & Carmon, T. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys. Rev. Lett. 102, 113601 (2009).

    Article  ADS  Google Scholar 

  10. Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nature Photon. 6, 369–373 (2012).

    Article  ADS  Google Scholar 

  11. Li, J., Lee, H. & Vahala, K. Microwave synthesizer using an on-chip Brillouin oscillator. Nature Commun. 4, 1–7 (2013).

    ADS  Google Scholar 

  12. Pant, R. et al. On-chip stimulated Brillouin scattering for microwave signal processing and generation. Laser Photon. Rev. 8, 653–666 (2014).

    Article  ADS  Google Scholar 

  13. Dainese, P. et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Phys. 2, 388–392 (2006).

    Article  ADS  Google Scholar 

  14. Kobyakov, A., Sauer, M. & Chowdhury, D. Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photon. 2, 1 (2009).

    Article  Google Scholar 

  15. Kang, M., Nazarkin, A., Brenn, A. & Russell, P. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nature Phys. 5, 276–280 (2009).

    Article  ADS  Google Scholar 

  16. Kang, M., Butsch, A. & Russell, P. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nature Photon. 5, 549–553 (2011).

    Article  ADS  Google Scholar 

  17. Bahl, G., Zehnpfennig, J., Tomes, M. & Carmon, T. Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nature Commun. 2, 403 (2011).

    Article  ADS  Google Scholar 

  18. Bahl, G., Tomes, M., Marquardt, F. & Carmon, T. Observation of spontaneous Brillouin cooling. Nature Phys. 8, 203–207 (2012).

    Article  ADS  Google Scholar 

  19. Eggleton, B., Poulton, C. & Pant, R. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Photon. 536–587 (2013).

  20. Rakich, P., Reinke, C., Camacho, R., Davids, P. & Wang, Z. Giant enhancement of stimulated Brillouin scattering in the subwavelength limit. Phys. Rev. X 2, 1–15 (2012).

    Google Scholar 

  21. Kippenberg, T. & Vahala, K. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  ADS  Google Scholar 

  22. Li, M. et al. Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008).

    Article  ADS  Google Scholar 

  23. Li, M., Pernice, W. & Tang, H. Tunable bipolar optical interactions between guided lightwaves. Nature Photon. 3, 464–468 (2009).

    Article  ADS  Google Scholar 

  24. Roels, J. et al. Tunable optical forces between nanophotonic waveguides. Nature Nanotech. 4, 510–513 (2009).

    Article  ADS  Google Scholar 

  25. Wiederhecker, G., Chen, L., Gondarenko, A. & Lipson, M. Controlling photonic structures using optical forces. Nature 462, 633–636 (2009).

    Article  ADS  Google Scholar 

  26. Van Thourhout, D. & Roels, J. Optomechanical device actuation through the optical gradient force. Nature Photon. 4, 211–217 (2010).

    Article  ADS  Google Scholar 

  27. Grudinin, I., Lee, H., Painter, O. & Vahala, K. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).

    Article  ADS  Google Scholar 

  28. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  ADS  Google Scholar 

  29. Okawachi, Y. & Gaeta, A. Nonlinear photonics: compressing light and sound. Nature Photon. 6, 274–276 (2012).

    Article  ADS  Google Scholar 

  30. Qiu, W. et al. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. Opt. Express 21, 31402 (2013).

    Article  ADS  Google Scholar 

  31. Van Laer, R., Kuyken, B., Van Thourhout, D. & Baets, R. Analysis of enhanced stimulated Brillouin scattering in silicon slot waveguides. Opt. Lett. 39, 1242–1245 (2014).

    Article  ADS  Google Scholar 

  32. Shin, H. et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nature Commun. 4, 1944 (2013).

    Article  ADS  Google Scholar 

  33. Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightw. Technol. 23, 401–412 (2005).

    Article  ADS  Google Scholar 

  34. Van Laere, F. et al. Compact focusing grating couplers for silicon-on-insulator integrated circuits. IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).

    Article  ADS  Google Scholar 

  35. Osgood, R. et al. Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires. Adv. Opt. Photon. 1, 162 (2009).

    Article  Google Scholar 

  36. Wang, J., Zhu, Y., Zhang, R. & Gauthier, D. FSBS resonances observed in a standard highly nonlinear fiber. Opt. Express 19, 5339–5349 (2011).

    Article  ADS  Google Scholar 

  37. Beugnot, J.-C. et al. Brillouin light scattering from surface acoustic waves in sub-wavelength diameter optical fibre. Nature Commun 5, 5242 (2014).

    Article  ADS  Google Scholar 

  38. Anetsberger, G., Rivière, R., Schliesser, A., Arcizet, O. & Kippenberg, T. Ultralow-dissipation optomechanical resonators on a chip. Nature Photon. 2, 627–633 (2008).

    Article  Google Scholar 

  39. Kabakova, I. Narrow linewidth Brillouin laser based on chalcogenide photonic chip. Opt. Lett. 38, 3208–3211 (2013).

    Article  ADS  Google Scholar 

  40. Li, J., Lee, H. & Vahala, K. Low-noise Brillouin laser on a chip at 1064 nm. Opt. Lett. 39, 287–290 (2014).

    Article  ADS  Google Scholar 

  41. Nunnenkamp, A., Sudhir, V., Feofanov, A., Roulet, A. & Kippenberg, T. Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics. Phys. Rev. Lett. 113, 023604 (2014).

    Article  ADS  Google Scholar 

  42. Marpaung, D., Morrison, B., Pant, R. & Eggleton, B. Frequency agile microwave photonic notch filter with anomalously high stopband rejection. Opt. Lett. 38, 4300–4303 (2013).

    Article  ADS  Google Scholar 

  43. Huang, X. & Fan, S. Complete all-optical silica fiber isolator via stimulated Brillouin scattering. J. Lightw. Technol. 29, 2267–2275 (2011).

    Article  ADS  Google Scholar 

  44. Selvaraja, S. et al. Highly uniform and low-loss passive silicon photonics devices using a 300 mm CMOS platform. Optical Fiber Communications Conference http://dx.doi.org/10.1364/OFC.2014.Th2A.33 (2014).

  45. Wilson-Rae, I. et al. High-Q nanomechanics via destructive interference of elastic waves. Phys. Rev. Lett. 106, 047205 (2011).

  46. Butsch, A., Koehler, J., Noskov, R. & Russell, P. CW-pumped single-pass frequency comb generation by resonant optomechanical nonlinearity in dual-nanoweb fiber. Optica 1, 158–164 (2014).

    Article  ADS  Google Scholar 

  47. Pernice, W., Li, M. & Tang, H. A mechanical Kerr effect in deformable photonic media. Appl. Phys. Lett. 95, 123507 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R.V.L. thanks the Agency for Innovation by Science and Technology in Flanders (IWT) for a PhD grant. This work was partially funded under the FP7-ERC-InSpectra programme and the ITN-network cQOM. R.V.L. thanks T. Van Vaerenbergh and S. Clemmen for reading the manuscript and L. Van Landschoot for taking SEM images.

Author information

Authors and Affiliations

Authors

Contributions

R.V.L. performed the fabrication, experiments, analysis and wrote the paper. B.K. provided experimental and conceptual advice. D.V.T. and R.B. supervised the work. All authors discussed the results and provided feedback on the manuscript.

Corresponding author

Correspondence to Raphaël Van Laer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1427 kb)

Supplementary image 1

Supplementary image 1 (GIF 600 kb)

Supplementary image 2

Supplementary image 2 (GIF 953 kb)

Supplementary image 3

Supplementary image 3 (GIF 1554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Laer, R., Kuyken, B., Van Thourhout, D. et al. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nature Photon 9, 199–203 (2015). https://doi.org/10.1038/nphoton.2015.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.11

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing