Macroscopic and direct light propulsion of bulk graphene material

Abstract

It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work the direct light propulsion of matter is observed on a macroscopic scale using a bulk graphene-based material. The unique structure and properties of graphene, and the novel morphology of the bulk three-dimensional linked graphene material make it capable not only of absorbing light at various wavelengths but also of emitting energetic electrons efficiently enough to drive the bulk material, following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk-scale light manipulation with the potential to realize long-sought applications in areas such as the solar sail and space transportation driven directly by sunlight.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Measurement apparatus and schematics of light-induced propulsion and rotation of graphene sponge.
Figure 2: Relationships between laser-induced propulsion/rotation of graphene sponge and laser wavelength and power density.
Figure 3: Schematic diagrams of the proposed mechanism.
Figure 4: Measurement of electron emission from the graphene sponge under laser illumination.

References

  1. 1

    Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

    ADS  Article  Google Scholar 

  2. 2

    Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    ADS  Article  Google Scholar 

  3. 3

    Swartzlander, G. A., Peterson, T. J., Artusio-Glimpse, A. B. & Raisanen, A. D. Stable optical lift. Nature Photon. 5, 48–51 (2011).

    ADS  Article  Google Scholar 

  4. 4

    Dogariu, A., Sukhov, S. & Saenz, J. J. Optically induced ‘negative forces’. Nature Photon. 7, 24–27 (2013).

    ADS  Article  Google Scholar 

  5. 5

    Kane, B. Levitated spinning graphene flakes in an electric quadrupole ion trap. Phys. Rev. B 82, 115441 (2010).

    ADS  Article  Google Scholar 

  6. 6

    Marago, O. M. et al. Brownian motion of graphene. ACS Nano 4, 7515–7523 (2010).

    Article  Google Scholar 

  7. 7

    Twombly, C. W., Evans, J. S. & Smalyukh, I. I. Optical manipulation of self-aligned graphene flakes in liquid crystals. Opt. Express 21, 1324–1334 (2013).

    ADS  Article  Google Scholar 

  8. 8

    Ashkin, A. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).

    ADS  Article  Google Scholar 

  9. 9

    Shvedov, V. G. et al. Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010).

    ADS  Article  Google Scholar 

  10. 10

    Shvedov, V. G., Hnatovsky, C., Rode, A. V. & Krolikowski, W. Robust trapping and manipulation of airborne particles with a bottle beam. Opt. Express 19, 17350–17356 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Kobayashi, M. & Abe, J. Optical motion control of maglev graphite. J. Am. Chem. Soc. 134, 20593–20596 (2012).

    Article  Google Scholar 

  12. 12

    Ageev, V. P. et al. Experimental and theoretical modeling of laser propulsion. Acta Astronaut. 7, 79–90 (1980).

    ADS  Article  Google Scholar 

  13. 13

    Phipps, C. et al. Review: laser-ablation propulsion. J. Propul. Power 26, 609–637 (2010).

    Article  Google Scholar 

  14. 14

    Tsu, T. C. Interplanetary travel by solar sail. ARS J. 29, 422–427 (1959).

    Article  Google Scholar 

  15. 15

    Tsuda, Y. et al. Flight status of IKAROS deep space solar sail demonstrator. Acta Astronaut. 69, 833–840 (2011).

    ADS  Article  Google Scholar 

  16. 16

    Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    ADS  Article  Google Scholar 

  17. 17

    Patil, V., Capone, A., Strauf, S. & Yang, E. H. Improved photoresponse with enhanced photoelectric contribution in fully suspended graphene photodetectors. Sci. Rep. 3, 2791 (2013).

    ADS  Article  Google Scholar 

  18. 18

    Li, T. et al. Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene. Phys. Rev. Lett. 108, 167401 (2012).

    ADS  Article  Google Scholar 

  19. 19

    Perakis, I. E. Stimulated near-infrared light emission in graphene. Physics 5, 43 (2012).

    Article  Google Scholar 

  20. 20

    Strait, J. H. et al. Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Lett. 11, 4902–4906 (2011).

    ADS  Article  Google Scholar 

  21. 21

    Wu, Y. et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio. Nature Commun. 6, 6141 (2015).

    ADS  Article  Google Scholar 

  22. 22

    Xu, Y., Sheng, K., Li, C. & Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010).

    Article  Google Scholar 

  23. 23

    Zhou, Y., Bao, Q., Tang, L. A. L., Zhong, Y. & Loh, K. P. Hydrothermal dehydration for the ‘green’ reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21, 2950–2956 (2009).

    Article  Google Scholar 

  24. 24

    Wehling, T. O., Katsnelson, M. I. & Lichtenstein, A. I. Impurities on graphene: midgap states and migration barriers. Phys. Rev. B 80, 085428 (2009).

    ADS  Article  Google Scholar 

  25. 25

    Wu, X. et al. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys. Rev. Lett. 101, 026801 (2008).

    ADS  Article  Google Scholar 

  26. 26

    Loh, K. P., Bao, Q. L., Eda, G. & Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nature Chem. 2, 1015–1024 (2010).

    ADS  Article  Google Scholar 

  27. 27

    Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    ADS  Article  Google Scholar 

  28. 28

    Prechtel, L. et al. Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nature Commun. 3, 646 (2012).

    ADS  Article  Google Scholar 

  29. 29

    Kim, J. et al. Unconventional terahertz carrier relaxation in graphene oxide: observation of enhanced Auger recombination due to defect saturation. ACS Nano 8, 2486–2494 (2014).

    Article  Google Scholar 

  30. 30

    Eda, G., Mattevi, C., Yamaguchi, H., Kim, H. & Chhowalla, M. Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 113, 15768–15771 (2009).

    Article  Google Scholar 

  31. 31

    Campos-Delgado, J. et al. Thermal stability studies of CVD-grown graphene nanoribbons: defect annealing and loop formation. Chem. Phys. Lett. 469, 177–182 (2009).

    ADS  Article  Google Scholar 

  32. 32

    Winzer, T., Knorr, A. & Malic, E. Carrier multiplication in graphene. Nano Lett. 10, 4839–4843 (2010).

    ADS  Article  Google Scholar 

  33. 33

    Winzer, T. & Malic, E. Impact of Auger processes on carrier dynamics in graphene. Phys. Rev. B 85, 241404 (2012).

    ADS  Article  Google Scholar 

  34. 34

    Winzer, T., Malic, E. & Knorr, A. Microscopic mechanism for transient population inversion and optical gain in graphene. Phys. Rev. B 87, 165413 (2013).

    ADS  Article  Google Scholar 

  35. 35

    Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Commun. 4, 1987 (2013).

    ADS  Article  Google Scholar 

  36. 36

    Gabor, N. M. Impact excitation and electron–hole multiplication in graphene and carbon nanotubes. Acc. Chem. Res. 46, 1348–1357 (2013).

    Article  Google Scholar 

  37. 37

    Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    ADS  Article  Google Scholar 

  38. 38

    Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Phys. 9, 248–252 (2013).

    ADS  Article  Google Scholar 

  39. 39

    Dushman, S. Electron emission from metals as a function of temperature. Phys. Rev. 21, 623–636 (1923).

    ADS  Article  Google Scholar 

  40. 40

    Turner, L. W. (ed) Electronics Engineer’s Reference Book 4th edn (Newnes-Butterworth, 1976).

  41. 41

    Yaghoobi, P., Moghaddam, M. V. & Nojeh, A. ‘Heat trap’: light-induced localized heating and thermionic electron emission from carbon nanotube arrays. Solid State Commun. 151, 1105–1108 (2011).

    ADS  Article  Google Scholar 

  42. 42

    Oida, S., Hannon, J. B., Tromp, R. M., McFeely, F. R. & Yurkas, J. A simple in situ method to detect graphene formation at SiC surfaces. Appl. Phys. Lett. 98, 213106 (2011).

    ADS  Article  Google Scholar 

  43. 43

    Malko, D., Neiss, C., Vines, F. & Gorling, A. Competition for graphene: graphynes with direction-dependent Dirac cones. Phys. Rev. Lett. 108, 086804 (2012).

    ADS  Article  Google Scholar 

  44. 44

    Vogt, P. et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012).

    ADS  Article  Google Scholar 

  45. 45

    Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H. & Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009).

    ADS  Article  Google Scholar 

  46. 46

    Tang, S. & Dresselhaus, M. S. Constructing anisotropic single-Dirac-cones in Bi1–xSbx thin films. Nano Lett. 12, 2021–2026 (2012).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Ministry of Science and Technology of China (MoST, grants 2012CB933401 and 2014CB643502), the National Natural Science Foundation of China (NSFC, grants 91433101, 21374050 and 51273093) and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, IRT1257). The authors thank Z. Li (Tsinghua University) for help with X-ray photoelectron spectroscope and X. Kong (Nankai University) and H. Li (Dalian Institute of Chemical Physics, Chinese Academy of Sciences) for mass spectrum measurements.

Author information

Affiliations

Authors

Contributions

Y.C. conceived and directed the study. T.Z. and H.C. carried out most of the experiments and data analysis. Y.W. carried out some initial experiments. T.Z. and Y.C., together with H.C., prepared most of the manuscipt. H.C. synthesized most of the samples and prepared the movies. Y.W., P.X., N.Y. and Y.L. participated in some experiments, data analysis and discussions. K.Z., X.Y. and Z.L. participated in current measurements. All authors participated in project discussions and production of the final manuscript.

Corresponding author

Correspondence to Yongsheng Chen.

Ethics declarations

Competing interests

A Chinese patent based on this work has been filed (application no. CN2014105392945).

Supplementary information

Supplementary information

Supplementary information (PDF 2567 kb)

Supplementary information

Supplementary Movie 1 (MOV 8830 kb)

Supplementary information

Supplementary Movie 2 (MOV 24241 kb)

Supplementary information

Supplementary Movie 3 (MOV 10828 kb)

Supplementary information

Supplementary Movie 4 (MOV 21090 kb)

Supplementary information

Supplementary Movie 5 (MOV 11592 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Chang, H., Wu, Y. et al. Macroscopic and direct light propulsion of bulk graphene material. Nature Photon 9, 471–476 (2015). https://doi.org/10.1038/nphoton.2015.105

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing