Abstract

To keep pace with the demands in optical communications, electro-optic modulators should feature large bandwidths, operate across all telecommunication windows, offer a small footprint, and allow for CMOS-compatible fabrication to keep costs low1. Here, we demonstrate a new ultra-compact plasmonic phase modulator based on the Pockels effect in a nonlinear polymer. The device has a length of only 29 µm and operates at 40 Gbit s−1. Its modulation frequency response is flat up to 65 GHz and beyond. The modulator has been tested to work across a 120-nm-wide wavelength range centred at 1,550 nm, and is expected to work beyond this range. Its operation has been verified for temperatures up to 85 °C and it is easy to fabricate. To the best of our knowledge, this is the most compact high-speed phase modulator demonstrated to date.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Silicon optical modulators. Nature Photon. 4, 518–526 (2010).

  2. 2.

    et al. Silicon–organic hybrid electro-optical devices. IEEE J. Sel. Top. Quantum Electron. 19, 3401413 (2013).

  3. 3.

    , , & Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

  4. 4.

    & Ultralow power silicon microdisk modulators and switches. 5th IEEE International Conference on Group IV Photonics 4–6 (2008).

  5. 5.

    , , , & Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Express 17, 22484–22490 (2009).

  6. 6.

    et al. 50-Gb/s ring-resonator-based silicon modulator. Opt. Express 21, 11869–11876 (2013).

  7. 7.

    et al. Self-aligned silicon ring resonator optical modulator with focused ion beam error correction. J. Opt. Soc. Am. B 30, 445–449 (2013).

  8. 8.

    , , & Compact and fast photonic crystal silicon optical modulators. Opt. Express 20, 22465–22474 (2012).

  9. 9.

    et al. 40 Gbit s−1 silicon optical modulator for high-speed applications. Electron. Lett. 43, 1196–1197 (2007).

  10. 10.

    , , & Ultra-compact, low RF power, 10 Gbit s−1 silicon Mach–Zehnder modulator. Opt. Express 15, 17106–17113 (2007).

  11. 11.

    et al. 50-Gb/s silicon optical modulator. Photon. Technol. Lett. 24, 234–236 (2012).

  12. 12.

    et al. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt. Express 21, 4116–4125 (2013).

  13. 13.

    et al. Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides. Opt. Express 18, 15618–15623 (2010).

  14. 14.

    et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008).

  15. 15.

    et al. 42.7 Gbit s−1 electro-optic modulator in silicon technology. Opt. Express 19, 11841–11851 (2011).

  16. 16.

    Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

  17. 17.

    Plasmonics: Fundamentals and Applications (Springer, 2007).

  18. 18.

    et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

  19. 19.

    & Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

  20. 20.

    & Nonlinear plasmonics. Nature Photon. 6, 737–748 (2012).

  21. 21.

    et al. Graphene–antenna sandwich photodetector. Nano Lett. 12, 3808–3813 (2012).

  22. 22.

    , & Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85, 5833–5835 (2004).

  23. 23.

    Long-range surface plasmon electrooptic modulator. Appl. Opt. 27, 4587–4590 (1988).

  24. 24.

    , & Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett. 9, 4403–4411 (2009).

  25. 25.

    et al. Performance of electro-optical plasmonic ring resonators at telecom wavelengths. Opt. Express 20, 2354–2362 (2012).

  26. 26.

    , , & PlasMOStor: a metal–oxide–Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009).

  27. 27.

    et al. Surface plasmon polariton absorption modulator. Opt. Express 19, 8855–8869 (2011).

  28. 28.

    , , & Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 1, 17–22 (2012).

  29. 29.

    , & Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010).

  30. 30.

    & Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl. Phys. Lett. 89, 041111 (2006).

  31. 31.

    Nonlinear Optics (Academic, 2008).

  32. 32.

    & Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

  33. 33.

    et al. EO polymer modulators reliability study. Proc. SPIE Org. Photon. Mater. Dev. XII 7599, 75990H (2010).

  34. 34.

    et al. Error vector magnitude as a performance measure for advanced modulation formats. IEEE Photonic. Tech. Lett. 24, 61–63 (2012); correction 24, 2198 (2012).

  35. 35.

    et al. Energy-efficient error control for tightly coupled systems using silicon photonic interconnects. J. Opt. Commun. Netw. 3, A21 (2011).

  36. 36.

    Energy consumption in optical modulators for interconnects. Opt. Express 20, A293–A308 (2012).

  37. 37.

    et al. High-speed silicon-organic hybrid (SOH) modulator with 1.6 fJ bit−1 and 180 pm V−1 in-device nonlinearity, in ECOC London 2013, paper We3B3.

Download references

Acknowledgements

The authors acknowledge support from EU research projects NAVOLCHI and SOFI, the Helmholtz International Research School for Teratronics (HIRST), the Karlsruhe School of Optics & Photonics (KSOP), the Center for Functional Nanostructures (CFN), the German Research Foundation (DFG) and Karlsruhe Nano Micro Facility (KNMF). Silicon-on-insulator waveguides were fabricated by IMEC in the framework of ePIXfab.

Author information

Affiliations

  1. Institutes IPQ & IMT, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany

    • A. Melikyan
    • , L. Alloatti
    • , A. Muslija
    • , P. C. Schindler
    • , J. Li
    • , R. Palmer
    • , D. Korn
    • , S. Muehlbrandt
    • , M. Sommer
    • , C. Koos
    • , M. Kohl
    • , W. Freude
    •  & J. Leuthold
  2. Institute of Electromagnetic Fields, ETH Zurich, 8092 Zurich, Switzerland

    • D. Hillerkuss
    •  & J. Leuthold
  3. Photonics Research Group, Ghent University-IMEC, 9000 Gent, Belgium

    • D. Van Thourhout
  4. GigOptix Inc., 8008 Zurich, Switzerland

    • B. Chen
    •  & R. Dinu
  5. GigOptix Inc., Bothell, Washington 98011, USA

    • R. Dinu

Authors

  1. Search for A. Melikyan in:

  2. Search for L. Alloatti in:

  3. Search for A. Muslija in:

  4. Search for D. Hillerkuss in:

  5. Search for P. C. Schindler in:

  6. Search for J. Li in:

  7. Search for R. Palmer in:

  8. Search for D. Korn in:

  9. Search for S. Muehlbrandt in:

  10. Search for D. Van Thourhout in:

  11. Search for B. Chen in:

  12. Search for R. Dinu in:

  13. Search for M. Sommer in:

  14. Search for C. Koos in:

  15. Search for M. Kohl in:

  16. Search for W. Freude in:

  17. Search for J. Leuthold in:

Contributions

A.Me. developed the concept, designed and fabricated the modulators, performed the experiments, analysed the data and wrote the paper. L.A. built the poling equipment, and developed the poling procedure and the experimental method to estimate the modulation index. D.H., P.C.S., J.L. and R.P. performed the experiments. D.K. helped in designing the passive silicon platform. B.C. and R.D. developed and synthesized the M3 nonlinear polymer. A.Mu., D.V.T. and M.S. provided support in fabrication. M.K., C.K., W.F. and J.L. developed the concept, designed the experiment and wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to A. Melikyan or W. Freude or J. Leuthold.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2014.9

Further reading