Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-speed plasmonic phase modulators

Abstract

To keep pace with the demands in optical communications, electro-optic modulators should feature large bandwidths, operate across all telecommunication windows, offer a small footprint, and allow for CMOS-compatible fabrication to keep costs low1. Here, we demonstrate a new ultra-compact plasmonic phase modulator based on the Pockels effect in a nonlinear polymer. The device has a length of only 29 µm and operates at 40 Gbit s−1. Its modulation frequency response is flat up to 65 GHz and beyond. The modulator has been tested to work across a 120-nm-wide wavelength range centred at 1,550 nm, and is expected to work beyond this range. Its operation has been verified for temperatures up to 85 °C and it is easy to fabricate. To the best of our knowledge, this is the most compact high-speed phase modulator demonstrated to date.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PPM and field distributions.
Figure 2: Characteristics of fabricated PPMs.
Figure 3: Measured performance of the PPMs.
Figure 4: Modulation experiments with the 1stG PPM.
Figure 5: Modulation experiments with the 2ndG PPM.

Similar content being viewed by others

References

  1. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photon. 4, 518–526 (2010).

    Article  ADS  Google Scholar 

  2. Leuthold, J. et al. Silicon–organic hybrid electro-optical devices. IEEE J. Sel. Top. Quantum Electron. 19, 3401413 (2013).

    Article  Google Scholar 

  3. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  4. Watts, M. & Trotter, D. Ultralow power silicon microdisk modulators and switches. 5th IEEE International Conference on Group IV Photonics 4–6 (2008).

  5. Dong, P., Liao, S., Feng, D., Liang, H. & Zheng, D. Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Express 17, 22484–22490 (2009).

    Article  ADS  Google Scholar 

  6. Baba, T. et al. 50-Gb/s ring-resonator-based silicon modulator. Opt. Express 21, 11869–11876 (2013).

    Article  ADS  Google Scholar 

  7. Thomson, D. J. et al. Self-aligned silicon ring resonator optical modulator with focused ion beam error correction. J. Opt. Soc. Am. B 30, 445–449 (2013).

    Article  ADS  Google Scholar 

  8. Nguyen, H. C., Hashimoto, S., Shinkawa, M. & Baba, T. Compact and fast photonic crystal silicon optical modulators. Opt. Express 20, 22465–22474 (2012).

    Article  ADS  Google Scholar 

  9. Liao, L. et al. 40 Gbit s−1 silicon optical modulator for high-speed applications. Electron. Lett. 43, 1196–1197 (2007).

    Article  Google Scholar 

  10. Green, W. M., Rooks, M. J., Sekaric, L. & Vlasov, Y. A. Ultra-compact, low RF power, 10 Gbit s−1 silicon Mach–Zehnder modulator. Opt. Express 15, 17106–17113 (2007).

    Article  ADS  Google Scholar 

  11. Thomson, D. J. et al. 50-Gb/s silicon optical modulator. Photon. Technol. Lett. 24, 234–236 (2012).

    Article  ADS  Google Scholar 

  12. Xiao, X. et al. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt. Express 21, 4116–4125 (2013).

    Article  ADS  Google Scholar 

  13. Ding, R. et al. Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides. Opt. Express 18, 15618–15623 (2010).

    Article  ADS  Google Scholar 

  14. Brosi, J. M. et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008).

    Article  ADS  Google Scholar 

  15. Alloatti, L. et al. 42.7 Gbit s−1 electro-optic modulator in silicon technology. Opt. Express 19, 11841–11851 (2011).

    Article  ADS  Google Scholar 

  16. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

    Book  Google Scholar 

  17. Maier, S. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Book  Google Scholar 

  18. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  ADS  Google Scholar 

  19. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    Article  ADS  Google Scholar 

  20. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nature Photon. 6, 737–748 (2012).

    Article  ADS  Google Scholar 

  21. Fang, Z. et al. Graphene–antenna sandwich photodetector. Nano Lett. 12, 3808–3813 (2012).

    Article  ADS  Google Scholar 

  22. Nikolajsen, T., Leosson, K. & Bozhevolnyi, S. I. Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85, 5833–5835 (2004).

    Article  ADS  Google Scholar 

  23. Schildkraut, J. Long-range surface plasmon electrooptic modulator. Appl. Opt. 27, 4587–4590 (1988).

    Article  ADS  Google Scholar 

  24. Cai, W., White, J. & Brongersma, M. Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett. 9, 4403–4411 (2009).

    Article  ADS  Google Scholar 

  25. Randhawa, S. et al. Performance of electro-optical plasmonic ring resonators at telecom wavelengths. Opt. Express 20, 2354–2362 (2012).

    Article  ADS  Google Scholar 

  26. Dionne, J. A., Diest, K., Sweatlock, L. A. & Atwater, H. A. PlasMOStor: a metal–oxide–Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009).

    Article  ADS  Google Scholar 

  27. Melikyan, A. et al. Surface plasmon polariton absorption modulator. Opt. Express 19, 8855–8869 (2011).

    Article  ADS  Google Scholar 

  28. Sorger, V. J., Lanzillotti-Kimura, N. D., Ma, R.-M. & Zhang, X. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 1, 17–22 (2012).

    Article  ADS  Google Scholar 

  29. Feigenbaum, E., Diest, K. & Atwater, H. A. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010).

    Article  ADS  Google Scholar 

  30. Pile, D. F. P. & Gramotnev, D. K. Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl. Phys. Lett. 89, 041111 (2006).

    Article  ADS  Google Scholar 

  31. Boyd, R. W. Nonlinear Optics (Academic, 2008).

    Google Scholar 

  32. Johnson, P. & Christy, R. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

  33. Jin, D. et al. EO polymer modulators reliability study. Proc. SPIE Org. Photon. Mater. Dev. XII 7599, 75990H (2010).

    Article  Google Scholar 

  34. Schmogrow, R. et al. Error vector magnitude as a performance measure for advanced modulation formats. IEEE Photonic. Tech. Lett. 24, 61–63 (2012); correction 24, 2198 (2012).

    Article  ADS  Google Scholar 

  35. Zheng, X. et al. Energy-efficient error control for tightly coupled systems using silicon photonic interconnects. J. Opt. Commun. Netw. 3, A21 (2011).

    Article  Google Scholar 

  36. Miller, D. A. B. Energy consumption in optical modulators for interconnects. Opt. Express 20, A293–A308 (2012).

    Article  ADS  Google Scholar 

  37. Palmer, R. et al. High-speed silicon-organic hybrid (SOH) modulator with 1.6 fJ bit−1 and 180 pm V−1 in-device nonlinearity, in ECOC London 2013, paper We3B3.

Download references

Acknowledgements

The authors acknowledge support from EU research projects NAVOLCHI and SOFI, the Helmholtz International Research School for Teratronics (HIRST), the Karlsruhe School of Optics & Photonics (KSOP), the Center for Functional Nanostructures (CFN), the German Research Foundation (DFG) and Karlsruhe Nano Micro Facility (KNMF). Silicon-on-insulator waveguides were fabricated by IMEC in the framework of ePIXfab.

Author information

Authors and Affiliations

Authors

Contributions

A.Me. developed the concept, designed and fabricated the modulators, performed the experiments, analysed the data and wrote the paper. L.A. built the poling equipment, and developed the poling procedure and the experimental method to estimate the modulation index. D.H., P.C.S., J.L. and R.P. performed the experiments. D.K. helped in designing the passive silicon platform. B.C. and R.D. developed and synthesized the M3 nonlinear polymer. A.Mu., D.V.T. and M.S. provided support in fabrication. M.K., C.K., W.F. and J.L. developed the concept, designed the experiment and wrote the manuscript.

Corresponding authors

Correspondence to A. Melikyan, W. Freude or J. Leuthold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 701 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melikyan, A., Alloatti, L., Muslija, A. et al. High-speed plasmonic phase modulators. Nature Photon 8, 229–233 (2014). https://doi.org/10.1038/nphoton.2014.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing