Abstract

Terahertz light can be used to identify numerous complex molecules, but has traditionally remained unexploited due to the lack of powerful broadband sources. Pulsed lasers can be used to generate broadband radiation, but such sources are bulky and produce only microwatts of average power. Conversely, although terahertz quantum cascade lasers are compact semiconductor sources of high-power terahertz radiation, their narrowband emission makes them unsuitable for complex spectroscopy. In this work, we demonstrate frequency combs based on terahertz quantum cascade lasers, which combine the high power of lasers with the broadband capabilities of pulsed sources. By fully exploiting the quantum-mechanically broadened gain spectrum available to these lasers, we can generate 5 mW of terahertz power spread across 70 laser lines. This radiation is sufficiently powerful to be detected by Schottky-diode mixers, and will lead to compact terahertz spectrometers.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Optical frequency metrology. Nature 416, 233–237 (2002).

  2. 2.

    , & Fourier transform spectroscopy with a laser frequency comb. Nature Photon. 3, 99–102 (2009).

  3. 3.

    & Materials for terahertz science and technology. Nature Mater. 1, 26–33 (2002).

  4. 4.

    et al. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116 (2005).

  5. 5.

    Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem. Rev. 104, 1759–1780 (2004).

  6. 6.

    et al. Terahertz semiconductor‐heterostructure laser. Nature 417, 156–159 (2002).

  7. 7.

    et al. High power terahertz quantum cascade lasers with symmetric wafer bonded active regions. Appl. Phys. Lett. 103, 171113 (2013).

  8. 8.

    , & Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE J. Quantum Electron. 29, 2693–2701 (1993).

  9. 9.

    , & Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

  10. 10.

    , , & Generation of 10 µJ ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett. 90, 171121 (2007).

  11. 11.

    et al. Demonstration of a room temperature 2.48–2.75 THz coherent spectroscopy source. Rev. Sci. Instrum. 82, 093105 (2011).

  12. 12.

    , & Application of cascaded frequency multiplication to molecular spectroscopy. Rev. Sci. Instrum. 76, 093113 (2005).

  13. 13.

    Principles of passive mode locking. Appl. Phys. B 58, 159–170 (1994).

  14. 14.

    et al. Coherent instabilities in a semiconductor laser with fast gain recovery. Phys. Rev. A 75, 031802 (2007).

  15. 15.

    et al. Mode-locked pulses from mid-infrared quantum cascade lasers. Opt. Express 17, 12929–12943 (2009).

  16. 16.

    et al. Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis. Nature Photon. 5, 306–313 (2011).

  17. 17.

    , , , & Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012).

  18. 18.

    , & Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

  19. 19.

    et al. Cavity-enhanced dual-comb spectroscopy. Nature Photon. 4, 55–57 (2010).

  20. 20.

    , , , & Terahertz tomography using quantum-cascade lasers. Opt. Lett. 37, 217–219 (2012).

  21. 21.

    et al. Ultrabroadband double-chirped mirror pairs for generation of octave spectra. J. Opt. Soc. Am. B 18, 882–885 (2001).

  22. 22.

    et al. Phase-resolved measurements of stimulated emission in a laser. Nature 449, 698–701 (2007).

  23. 23.

    et al. A terahertz pulse emitter monolithically integrated with a quantum cascade laser. Appl. Phys. Lett. 98, 061112 (2011).

  24. 24.

    et al. Gain and losses in THz quantum cascade laser with metal–metal waveguide. Opt. Express 19, 733–738 (2011).

  25. 25.

    , , & Gain measurements of scattering-assisted terahertz quantum cascade lasers. Appl. Phys. Lett. 100, 261111 (2012).

  26. 26.

    et al. High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal–metal waveguides. Opt. Lett. 32, 2840–2842 (2007).

  27. 27.

    & Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers. Phys. Rev. B 80, 245316 (2009).

  28. 28.

    et al. Injection-locking of terahertz quantum cascade lasers up to 35 GHz using RF amplitude modulation. Opt. Express 18, 20799–20816 (2010).

  29. 29.

    et al. Quantum noise in a terahertz hot electron bolometer mixer. Appl. Phys. Lett. 96, 111113 (2010).

  30. 30.

    et al. Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser. Appl. Phys. Lett. 89, 031115 (2006).

  31. 31.

    et al. Multimode regimes in quantum cascade lasers: from coherent instabilities to spatial hole burning. Phys. Rev. A 77, 053804 (2008).

  32. 32.

    et al. Terahertz transfer onto a telecom optical carrier. Nature Photon. 1, 411–415 (2007).

  33. 33.

    et al. Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer. Appl. Phys. Lett. 103, 051115 (2013).

  34. 34.

    et al. Frequency locking of single-mode 3.5-THz quantum cascade lasers using a gas cell. Appl. Phys. Lett. 100, 041111 (2012).

  35. 35.

    et al. Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz. Appl. Phys. Lett. 99, 191104 (2011).

  36. 36.

    et al. Quantum-limited frequency fluctuations in a terahertz laser. Nature Photon. 6, 525–528 (2012).

  37. 37.

    et al. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. Nature Commun. 3, 1040 (2012).

  38. 38.

    & Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67, 3523–3525 (1995).

  39. 39.

    , , , & Low-divergence single-mode terahertz quantum cascade laser. Nature Photon. 3, 586–590 (2009).

  40. 40.

    , & Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers. Opt. Lett. 37, 2070–2072 (2012).

Download references

Acknowledgements

The work at MIT was supported by NASA and the NSF. The work in the Netherlands was supported by NWO, NATO SFP and RadioNet. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-programme laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration (contract no. DE-AC04-94AL85000). The authors thank D. Levonian for his help in setting up the FTIR.

Author information

Affiliations

  1. Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

    • David Burghoff
    • , Tsung-Yu Kao
    • , Ningren Han
    • , Chun Wang Ivan Chan
    • , Xiaowei Cai
    • , Yang Yang
    •  & Qing Hu
  2. SRON Netherlands Institute for Space Research, 9747 AD, Groningen, The Netherlands

    • Darren J. Hayton
    •  & Jian-Rong Gao
  3. Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

    • Jian-Rong Gao
  4. Center for Integrated Nanotechnology, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA

    • John L. Reno

Authors

  1. Search for David Burghoff in:

  2. Search for Tsung-Yu Kao in:

  3. Search for Ningren Han in:

  4. Search for Chun Wang Ivan Chan in:

  5. Search for Xiaowei Cai in:

  6. Search for Yang Yang in:

  7. Search for Darren J. Hayton in:

  8. Search for Jian-Rong Gao in:

  9. Search for John L. Reno in:

  10. Search for Qing Hu in:

Contributions

D.B. conceived the strategy, designed the devices, performed the measurements and completed the analysis. D.B. and N.H. performed electromagnetic simulations. T.-Y.K., N.H. and C.W.I.C. fabricated the devices. D.B., X.C. and Y.Y. performed the heterodyne beat-note measurements. D.J.H. and J.-R.G. provided the hot electron bolometer mixer. J.L.R. provided the material growth. All work was performed under the supervision of Q.H.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to David Burghoff.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2014.85

Further reading