Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cavity-stimulated Raman emission from a single quantum dot spin

Abstract

Solid-state quantum emitters have shown strong potential for applications in quantum information, but the spectral inhomogeneity of these emitters poses a significant challenge. We address this issue in a cavity–quantum dot system by demonstrating cavity-stimulated Raman spin flip emission. This process avoids populating the excited state of the emitter and generates a photon that is Raman shifted from the laser and enhanced by the cavity. The emission is spectrally narrow and tunable over a range of at least 125 GHz, which is two orders of magnitude greater than the natural linewidth. We obtain the regime in which the Raman emission is spin dependent, which couples the photon to a long-lived electron spin qubit. This process can enable an efficient, tunable source of indistinguishable photons and deterministic entanglement of distant spin qubits in a photonic-crystal quantum network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of Raman emission from a cavity–QD system.
Figure 2: InAs quantum dot coupled to an optical cavity.
Figure 3: Resonant Raman emission.
Figure 4: Cavity-stimulated Raman emission.
Figure 5: Spin selectivity and spin-photon correlation.

Similar content being viewed by others

References

  1. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  2. Imamoğlu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  ADS  Google Scholar 

  3. Liu, R.-B., Yao, W. & Sham, L. J. Quantum computing by optical control of electron spins. Adv. Phys. 59, 703–802 (2010).

    Article  ADS  Google Scholar 

  4. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    Article  ADS  Google Scholar 

  5. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  6. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  7. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  8. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  9. Faraon, A., Santori, C., Huang, Z., Acosta, V. M. & Beausoleil, R. G. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012).

    Article  ADS  Google Scholar 

  10. Weiss, K. M., Elzerman, J. M., Delley, Y. L., Miguel-Sanchez, J. & Imamoglu, A. Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots. Phys. Rev. Lett. 109, 107401 (2012).

    Article  ADS  Google Scholar 

  11. Greilich, A., Carter, S. G., Kim, D., Bracker, A. S. & Gammon, D. Optical control of one and two hole spins in interacting quantum dots. Nature Photon. 5, 702–708 (2011).

    Article  ADS  Google Scholar 

  12. Kim, D., Carter, S. G., Greilich, A., Bracker, A. S. & Gammon, D. Ultrafast optical control of entanglement between two quantum-dot spins. Nature Phys. 7, 223–229 (2011).

    Article  ADS  Google Scholar 

  13. Economou, S. E., Lindner, N. & Rudolph, T. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett. 105, 093601 (2010).

    Article  ADS  Google Scholar 

  14. Park, Y.-S., Cook, A. K. & Wang, H. Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075–2079 (2006).

    Article  ADS  Google Scholar 

  15. Sanaka, K., Pawlis, A., Ladd, T. D., Lischka, K. & Yamamoto, Y. Indistinguishable photons from independent semiconductor nanostructures. Phys. Rev. Lett. 103, 053601 (2009).

    Article  ADS  Google Scholar 

  16. Fu, K.-M. C. et al. Ultrafast control of donor-bound electron spins with single detuned optical pulses. Nature Phys. 4, 780–784 (2008).

    Article  ADS  Google Scholar 

  17. Hennrich, M., Legero, T., Kuhn, A. & Rempe, G. Vacuum-stimulated Raman scattering based on adiabatic passage in a high-finesse optical cavity. Phys. Rev. Lett. 85, 4872–4875 (2000).

    Article  ADS  Google Scholar 

  18. Santori, C., Fattal, D., Fu, K.-M. C., Barclay, P. E. & Beausoleil, R. G. On the indistinguishability of Raman photons. New J. Phys. 11, 123009 (2009).

    Article  ADS  Google Scholar 

  19. Kiraz, A., Atatüre, M. & Imamoğlu, A. Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing. Phys. Rev. A 69, 032305 (2004).

    Article  ADS  Google Scholar 

  20. Carter, S. G. et al. Quantum control of a spin qubit coupled to a photonic crystal cavity. Nature Photon. 7, 329–334 (2013).

    Article  ADS  Google Scholar 

  21. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    Article  ADS  Google Scholar 

  22. Noda, S., Fujita, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 1, 449–458 (2007).

    Article  ADS  Google Scholar 

  23. Ota, Y., Iwamoto, S., Kumagai, N. & Arakawa, Y. Spontaneous two photon emission from a single quantum dot. Phys. Rev. Lett. 107, 233602 (2011).

    Article  ADS  Google Scholar 

  24. Greilich, A. et al. Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006).

    Article  ADS  Google Scholar 

  25. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    Article  ADS  Google Scholar 

  26. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    Article  ADS  Google Scholar 

  27. Kim, E. D. et al. Fast spin rotations by optically controlled geometric phases in a charge-tunable InAs quantum dot. Phys. Rev. Lett. 104, 167401 (2010).

    Article  ADS  Google Scholar 

  28. Sweeney, T. M., Phelps, C. & Wang, H. Quantum control of electron spins in the two-dimensional electron gas of a CdTe quantum well with a pair of Raman-resonant phase-locked laser pulses. Phys. Rev. B 84, 075321 (2011).

    Article  ADS  Google Scholar 

  29. Fernandez, G., Volz, T., Desbuquois, R., Badolato, A. & Imamoglu, A. Optically tunable spontaneous Raman fluorescence from a single self-assembled InGaAs quantum dot. Phys. Rev. Lett. 103, 087406 (2009).

    Article  ADS  Google Scholar 

  30. He, Y. et al. Indistinguishable tunable single photons emitted by spin-flip Raman transitions in InGaAs quantum dots. Phys. Rev. Lett. 111, 237403 (2013).

    Article  ADS  Google Scholar 

  31. Francardi, M. et al. Enhanced spontaneous emission in a photonic-crystal light-emitting diode. Appl. Phys. Lett. 93, 143102 (2008).

    Article  ADS  Google Scholar 

  32. Laucht, A. et al. Electrical control of spontaneous emission and strong coupling for a single quantum dot. New J. Phys. 11, 023034 (2009).

    Article  ADS  Google Scholar 

  33. Pinotsi, D., Fallahi, P., Miguel-Sanchez, J. & Imamoglu, A. Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures. IEEE J. Quantum Electron. 47, 1371–1374 (2011).

    Article  ADS  Google Scholar 

  34. Rakher, M. T., Stoltz, N. G., Coldren, L. A., Petroff, P. M. & Bouwmeester, D. Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots. Phys. Rev. Lett. 102, 097403 (2009).

    Article  ADS  Google Scholar 

  35. Atatüre, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    Article  ADS  Google Scholar 

  36. Xu, X. et al. Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 97401 (2007).

    Article  ADS  Google Scholar 

  37. Smith, J. M. et al. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett. 94, 197402 (2005).

    Article  ADS  Google Scholar 

  38. Mukamel, S. Principles of Nonlinear Optical Spectroscopy Ch. 9 (Oxford Series on Optical and Imaging Sciences, Oxford Univ. Press, 1999).

    Google Scholar 

  39. Urbaszek, B. et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

    Article  ADS  Google Scholar 

  40. Lee, H. S. et al. Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation. Appl. Phys. Lett. 95, 191109 (2009).

    Article  ADS  Google Scholar 

  41. Cai, T., Bose, R., Solomon, G. S. & Waks, E. Controlled coupling of photonic crystal cavities using photochromic tuning. Appl. Phys. Lett. 102, 141118 (2013).

    Article  ADS  Google Scholar 

  42. Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

    Article  ADS  Google Scholar 

  43. Sato, Y. et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nature Photon. 6, 56–61 (2012).

    Article  ADS  Google Scholar 

  44. Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    Article  ADS  Google Scholar 

  45. De Greve, K. et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    Article  ADS  Google Scholar 

  46. Schaibley, J. R. et al. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 167401 (2013).

    Article  ADS  Google Scholar 

  47. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  ADS  Google Scholar 

  48. Flagg, E. B. et al. Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010).

    Article  ADS  Google Scholar 

  49. Englund, D., Faraon, A., Zhang, B., Yamamoto, Y. & Vučković, J. Generation and transfer of single photons on a photonic crystal chip. Opt. Express 15, 5550–5558 (2007).

    Article  ADS  Google Scholar 

  50. Kiravittaya, S. et al. Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation. J. Appl. Phys. 109, 053115 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Lawall for advice on high-resolution spectroscopy and on building a scanning Fabry–Pérot filter. The authors also thank H. Wang for discussions on the physics of cavity–quantum electrodynamics. This work was supported by a Multi-University Research Initiative (US Army Research Office; W911NF0910406) and the US Office of Naval Research.

Author information

Authors and Affiliations

Authors

Contributions

T.M.S., S.G.C., A.S.B. and D.G. conceived and designed the experiments and samples. A.S.B. grew the quantum dot samples. M.K., C.S.K. and A.S.B. processed photonic crystals and gates in the samples. E.R.C and T.M.S. developed atomic layer deposition tuning of photonic-crystal cavities. T.M.S., S.G.C., L.Y., P.M.V. and P.G.B. optically characterized the cavities and quantum dots. T.M.S. and S.G.C. performed the Raman spin-flip emission experiments.

Corresponding author

Correspondence to Daniel Gammon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweeney, T., Carter, S., Bracker, A. et al. Cavity-stimulated Raman emission from a single quantum dot spin. Nature Photon 8, 442–447 (2014). https://doi.org/10.1038/nphoton.2014.84

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.84

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing