Abstract

Solid-state quantum emitters have shown strong potential for applications in quantum information, but the spectral inhomogeneity of these emitters poses a significant challenge. We address this issue in a cavity–quantum dot system by demonstrating cavity-stimulated Raman spin flip emission. This process avoids populating the excited state of the emitter and generates a photon that is Raman shifted from the laser and enhanced by the cavity. The emission is spectrally narrow and tunable over a range of at least 125 GHz, which is two orders of magnitude greater than the natural linewidth. We obtain the regime in which the Raman emission is spin dependent, which couples the photon to a long-lived electron spin qubit. This process can enable an efficient, tunable source of indistinguishable photons and deterministic entanglement of distant spin qubits in a photonic-crystal quantum network.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

  2. 2.

    et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

  3. 3.

    , & Quantum computing by optical control of electron spins. Adv. Phys. 59, 703–802 (2010).

  4. 4.

    et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

  5. 5.

    , & A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

  6. 6.

    , , & Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

  7. 7.

    et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

  8. 8.

    et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

  9. 9.

    , , , & Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012).

  10. 10.

    , , , & Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots. Phys. Rev. Lett. 109, 107401 (2012).

  11. 11.

    , , , & Optical control of one and two hole spins in interacting quantum dots. Nature Photon. 5, 702–708 (2011).

  12. 12.

    , , , & Ultrafast optical control of entanglement between two quantum-dot spins. Nature Phys. 7, 223–229 (2011).

  13. 13.

    , & Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett. 105, 093601 (2010).

  14. 14.

    , & Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075–2079 (2006).

  15. 15.

    , , , & Indistinguishable photons from independent semiconductor nanostructures. Phys. Rev. Lett. 103, 053601 (2009).

  16. 16.

    et al. Ultrafast control of donor-bound electron spins with single detuned optical pulses. Nature Phys. 4, 780–784 (2008).

  17. 17.

    , , & Vacuum-stimulated Raman scattering based on adiabatic passage in a high-finesse optical cavity. Phys. Rev. Lett. 85, 4872–4875 (2000).

  18. 18.

    , , , & On the indistinguishability of Raman photons. New J. Phys. 11, 123009 (2009).

  19. 19.

    , & Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing. Phys. Rev. A 69, 032305 (2004).

  20. 20.

    et al. Quantum control of a spin qubit coupled to a photonic crystal cavity. Nature Photon. 7, 329–334 (2013).

  21. 21.

    et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

  22. 22.

    , & Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 1, 449–458 (2007).

  23. 23.

    , , & Spontaneous two photon emission from a single quantum dot. Phys. Rev. Lett. 107, 233602 (2011).

  24. 24.

    et al. Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006).

  25. 25.

    et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

  26. 26.

    , , , & Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

  27. 27.

    et al. Fast spin rotations by optically controlled geometric phases in a charge-tunable InAs quantum dot. Phys. Rev. Lett. 104, 167401 (2010).

  28. 28.

    , & Quantum control of electron spins in the two-dimensional electron gas of a CdTe quantum well with a pair of Raman-resonant phase-locked laser pulses. Phys. Rev. B 84, 075321 (2011).

  29. 29.

    , , , & Optically tunable spontaneous Raman fluorescence from a single self-assembled InGaAs quantum dot. Phys. Rev. Lett. 103, 087406 (2009).

  30. 30.

    et al. Indistinguishable tunable single photons emitted by spin-flip Raman transitions in InGaAs quantum dots. Phys. Rev. Lett. 111, 237403 (2013).

  31. 31.

    et al. Enhanced spontaneous emission in a photonic-crystal light-emitting diode. Appl. Phys. Lett. 93, 143102 (2008).

  32. 32.

    et al. Electrical control of spontaneous emission and strong coupling for a single quantum dot. New J. Phys. 11, 023034 (2009).

  33. 33.

    , , & Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures. IEEE J. Quantum Electron. 47, 1371–1374 (2011).

  34. 34.

    , , , & Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots. Phys. Rev. Lett. 102, 097403 (2009).

  35. 35.

    et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

  36. 36.

    et al. Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 97401 (2007).

  37. 37.

    et al. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett. 94, 197402 (2005).

  38. 38.

    Principles of Nonlinear Optical Spectroscopy Ch. 9 (Oxford Series on Optical and Imaging Sciences, Oxford Univ. Press, 1999).

  39. 39.

    et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

  40. 40.

    et al. Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation. Appl. Phys. Lett. 95, 191109 (2009).

  41. 41.

    , , & Controlled coupling of photonic crystal cavities using photochromic tuning. Appl. Phys. Lett. 102, 141118 (2013).

  42. 42.

    , & Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

  43. 43.

    et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nature Photon. 6, 56–61 (2012).

  44. 44.

    , , , & Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

  45. 45.

    et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

  46. 46.

    et al. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 167401 (2013).

  47. 47.

    et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

  48. 48.

    et al. Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010).

  49. 49.

    , , , & Generation and transfer of single photons on a photonic crystal chip. Opt. Express 15, 5550–5558 (2007).

  50. 50.

    et al. Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation. J. Appl. Phys. 109, 053115 (2011).

Download references

Acknowledgements

The authors thank J. Lawall for advice on high-resolution spectroscopy and on building a scanning Fabry–Pérot filter. The authors also thank H. Wang for discussions on the physics of cavity–quantum electrodynamics. This work was supported by a Multi-University Research Initiative (US Army Research Office; W911NF0910406) and the US Office of Naval Research.

Author information

Affiliations

  1. Naval Research Laboratory, Washington, DC, 20375, USA

    • Timothy M. Sweeney
    • , Samuel G. Carter
    • , Allan S. Bracker
    • , Chul Soo Kim
    • , Lily Yang
    • , Patrick M. Vora
    • , Erin R. Cleveland
    •  & Daniel Gammon
  2. Sotera Defense Solutions, Annapolis Junction, Maryland 20701, USA

    • Mijin Kim
  3. US Naval Academy, Annapolis, Maryland 21402, USA

    • Peter G. Brereton

Authors

  1. Search for Timothy M. Sweeney in:

  2. Search for Samuel G. Carter in:

  3. Search for Allan S. Bracker in:

  4. Search for Mijin Kim in:

  5. Search for Chul Soo Kim in:

  6. Search for Lily Yang in:

  7. Search for Patrick M. Vora in:

  8. Search for Peter G. Brereton in:

  9. Search for Erin R. Cleveland in:

  10. Search for Daniel Gammon in:

Contributions

T.M.S., S.G.C., A.S.B. and D.G. conceived and designed the experiments and samples. A.S.B. grew the quantum dot samples. M.K., C.S.K. and A.S.B. processed photonic crystals and gates in the samples. E.R.C and T.M.S. developed atomic layer deposition tuning of photonic-crystal cavities. T.M.S., S.G.C., L.Y., P.M.V. and P.G.B. optically characterized the cavities and quantum dots. T.M.S. and S.G.C. performed the Raman spin-flip emission experiments.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Daniel Gammon.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2014.84

Further reading