Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tunable hot-carrier photodetection beyond the bandgap spectral limit

Abstract

The spectral response of common optoelectronic photodetectors is restricted by a cutoff wavelength limit λc that is related to the activation energy (or bandgap) of the semiconductor structure (or material) (Δ) through the relationship λc = hc/Δ. This spectral rule dominates device design and intrinsically limits the long-wavelength response of a semiconductor photodetector. Here, we report a new, long-wavelength photodetection principle based on a hot–cold hole energy transfer mechanism that overcomes this spectral limit. Hot carriers injected into a semiconductor structure interact with cold carriers and excite them to higher energy states. This enables a very long-wavelength infrared response. In our experiments, we observe a response up to 55 µm, which is tunable by varying the degree of hot-hole injection, for a GaAs/AlGaAs sample with Δ = 0.32 eV (equivalent to 3.9 µm in wavelength).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sample structure and the VLWIR response at 5.3 K.
Figure 2: Spectral weight (SW) of response and differential photocurrents.
Figure 3: Photoresponse obtained using long-pass filters and an external optical excitation source.
Figure 4: Tuning the VLWIR response.

References

  1. 1

    Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nature Photon. 7, 53–59 (2013).

    ADS  Article  Google Scholar 

  2. 2

    Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    ADS  Article  Google Scholar 

  3. 3

    Sun, Z. et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883 (2012).

    ADS  Article  Google Scholar 

  4. 4

    Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech. 7, 472–478 (2012).

    ADS  Article  Google Scholar 

  5. 5

    Rossi, F. & Kuhn, T. Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys. 74, 895–950 (2002).

    ADS  Article  Google Scholar 

  6. 6

    Winnerl, S. et al. Carrier relaxation in epitaxial graphene photoexcited near the Dirac point. Phys. Rev. Lett. 107, 237401 (2011).

    ADS  Article  Google Scholar 

  7. 7

    Rosenwaks, Y. et al. Hot-carrier cooling in GaAs: quantum wells versus bulk. Phys. Rev. B 48, 14675–14678 (1993).

    ADS  Article  Google Scholar 

  8. 8

    Jalabert, R. & Das Sarma, S. Inelastic scattering in a doped polar semiconductor. Phys. Rev. B 41, 3651–3654 (1990).

    ADS  Article  Google Scholar 

  9. 9

    Petersen, C. L. & Lyon, S. A. Observation of hot-electron energy loss through the emission of phonon–plasmon coupled modes in GaAs. Phys. Rev. Lett. 65, 760–763 (1990).

    ADS  Article  Google Scholar 

  10. 10

    Sicault, D., Teissier, R., Pardo, F., Pelouard, J.-L. & Mollot, F. Experimental study of hot-electron inelastic scattering rate in p-type InGaAs. Phys. Rev. B 65, 121301 (2002).

    ADS  Article  Google Scholar 

  11. 11

    Xiao, J. et al. Carrier multiplication in semiconductor nanocrystals detected by energy transfer to organic dye molecules. Nature Commun. 3, 1170 (2012).

    ADS  Article  Google Scholar 

  12. 12

    Capasso, F. Band-gap engineering: from physics and materials to new semiconductor devices. Science 235, 172–176 (1987).

    ADS  Article  Google Scholar 

  13. 13

    Kang, Y. et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nature Photon. 3, 59–63 (2009).

    ADS  Article  Google Scholar 

  14. 14

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2007).

  15. 15

    Lao, Y.-F. & Perera, A. G. U. Temperature-dependent internal photoemission probe for band parameters. Phys. Rev. B 86, 195315 (2012).

    ADS  Article  Google Scholar 

  16. 16

    Rinzan, M. B. M. et al. AlGaAs emitter/GaAs barrier terahertz detector with a 2.3 THz threshold. Appl. Phys. Lett. 86, 071112 (2005).

    ADS  Article  Google Scholar 

  17. 17

    Perera, A. G. U. et al. GaAs multilayer p+-i homojunction far-infrared detectors. J. Appl. Phys. 81, 3316–3319 (1997).

    ADS  Article  Google Scholar 

  18. 18

    Matsik, S. G. et al. Cutoff tailorability of heterojunction terahertz detectors. Appl. Phys. Lett. 82, 139–141 (2003).

    ADS  Article  Google Scholar 

  19. 19

    Chapler, B. C. et al. Infrared probe of the insulator-to-metal transition in Ga1– xMnxAs and Ga1– xBexAs. Phys. Rev. B 84, 081203 (2011).

    ADS  Article  Google Scholar 

  20. 20

    Lao, Y.-F. & Perera, A. G. U. Dielectric function model for p-type semiconductor inter-valence band transitions. J. Appl. Phys. 109, 103528 (2011).

    ADS  Article  Google Scholar 

  21. 21

    Newman, R. & Tyler, W. W. Effect of impurities on free-hole infrared absorption in p-type germanium. Phys. Rev. 105, 885–886 (1957).

    ADS  Article  Google Scholar 

  22. 22

    Schneider, H. & Liu, H. C. Quantum Well Infrared Photodetectors: Physics and Applications (Springer Series in Optical Sciences 126, Springer, 2007).

  23. 23

    Hayes, J. R., Levi, A. F. J. & Wiegmann, W. Hot-electron spectroscopy of GaAs. Phys. Rev. Lett. 54, 1570–1572 (1985).

    ADS  Article  Google Scholar 

  24. 24

    Levi, A. F. J., Hayes, J. R., Platzman, P. M. & Wiegmann, W. Injected-hot-electron transport in GaAs. Phys. Rev. Lett. 55, 2071–2073 (1985).

    ADS  Article  Google Scholar 

  25. 25

    Thibaudeau, L., Bois, P. & Duboz, J. Y. A self-consistent model for quantum well infrared photodetectors. J. Appl. Phys. 79, 446–454 (1996).

    ADS  Article  Google Scholar 

  26. 26

    Woerner, M., Elsaesser, T. & Kaiser, W. Relaxation processes of hot holes in p-type germanium studied by picosecond infrared spectroscopy. Phys. Rev. B 45, 8378–8387 (1992).

    ADS  Article  Google Scholar 

  27. 27

    Elsaesser, T. et al. Relaxation processes of hot holes in Ge and GaAs investigated by ultrafast infrared spectroscopy. Semicond. Sci. Technol. 9, 689–693 (1994).

    ADS  Article  Google Scholar 

  28. 28

    Lao, Y.-F. et al. Direct observation of spin–orbit splitting and phonon-assisted optical transitions in the valence band by internal photoemission spectroscopy. Phys. Rev. B 88, 201302 (2013).

    ADS  Article  Google Scholar 

  29. 29

    Esaev, D. G., Rinzan, M. B. M., Matsik, S. G. & Perera, A. G. U. Design and optimization of GaAs/AlGaAs heterojunction infrared detectors. J. Appl. Phys. 96, 4588–4597 (2004).

    ADS  Article  Google Scholar 

  30. 30

    Brill, B. & Heiblum, M. Electron heating in GaAs due to electron–electron interactions. Phys. Rev. B 49, 14762–14765 (1994).

    ADS  Article  Google Scholar 

  31. 31

    Blakemore, J. S. Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123 (1982).

    ADS  Article  Google Scholar 

  32. 32

    Matthews, M. R. et al. Transient photoconductivity measurements of carrier lifetimes in an InAs/In0.15Ga0.85As dots-in-a-well detector. Appl. Phys. Lett. 90, 103519 (2007).

    ADS  Article  Google Scholar 

  33. 33

    Chen, J. et al. Hybrid organic/inorganic optical up-converter for pixel-less near-infrared imaging. Adv. Mater. 24, 3138–3142 (2012).

    ADS  Article  Google Scholar 

  34. 34

    Sang, L., Hu, J., Zou, R., Koide, Y. & Liao, M. Arbitrary multicolor photodetection by hetero-integrated semiconductor nanostructures. Sci. Rep. 3, 2368 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US Army Research Office (grant no. W911NF-12-2-0035), monitored by William W. Clark, and in part by the US National Science Foundation (grant no. ECCS-1232184, monitored by John M. Zavada). The University of Leeds acknowledges supports from the UK Engineering and Physical Sciences Research Council and E.H.L. from the European Research Council Advanced Grant ‘TOSCA’. Authors wish to dedicate this paper to the memory of Dr. H. C. Liu (H.C. as he was universally known). H.C. was an integral part of this work, and was inspirational to generations of researcher.

Author information

Affiliations

Authors

Contributions

A.G.U.P. conceived the split-off heterojunction concept and was involved in designing the device structure. Y.F.L. and A.G.U.P. conceived the experiments and wrote the paper. L.H.L., S.P.K. and E.H.L. grew the samples using molecular beam epitaxy. H.C.L. carried out the device processing. Y.F.L. performed electrical and optical measurements and data analysis. A.G.U.P. guided the project. All authors contributed to the content in the paper.

Corresponding author

Correspondence to A. G. Unil Perera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 614 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lao, YF., Perera, A., Li, L. et al. Tunable hot-carrier photodetection beyond the bandgap spectral limit. Nature Photon 8, 412–418 (2014). https://doi.org/10.1038/nphoton.2014.80

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing