Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gain dynamics in a soft-X-ray laser amplifier perturbed by a strong injected X-ray field

Abstract

Seeding soft-X-ray plasma amplifiers with high harmonics has been demonstrated to generate high-brightness soft-X-ray laser pulses with full spatial and temporal coherence1,2,3. The interaction between the injected coherent field and the swept-gain medium has been modelled4,5. However, no experiment has been conducted to probe the gain dynamics when perturbed by a strong external seed field. Here, we report the first X-ray pump–X-ray probe measurement of the nonlinear response of a plasma amplifier perturbed by a strong soft-X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (λ = 18.9 nm) into a collisionally excited nickel-like molybdenum plasma to measure with femtosecond resolution the gain depletion induced by the saturated amplification of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5–1.75 ps confirms the possibility to generate ultra-intense, fully phase-coherent soft-X-ray lasers by chirped pulse amplification in plasma amplifiers6.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of the set-up used to measure the gain dynamics in an injection-seeded soft-X-ray laser plasma amplifier.
Figure 2: Experimental measurement of the gain dynamics in a soft-X-ray plasma Ni-like Mo amplifier compared with results from a Maxwell–Bloch simulation.
Figure 3: Simulation of HH pump–HH probe and single stretched HH seed pulse amplification in a plasma soft-X-ray amplifier.

References

  1. 1

    Zeitoun, Ph. et al. A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam. Nature 431, 426–429 (2004).

    ADS  Article  Google Scholar 

  2. 2

    Wang, Y. et al. High-brightness injection-seeded soft-X-ray-laser amplifier using a solid target. Phys. Rev. Lett. 97, 123901 (2006).

    ADS  Article  Google Scholar 

  3. 3

    Wang, Y. et al. Phase-coherent, injection-seeded, table-top soft-X-ray lasers at 18.9 nm and 13.9 nm. Nature Photon. 2, 94–98 (2008).

    ADS  Article  Google Scholar 

  4. 4

    Al'miev, I. R. et al. Dynamical description of transient X-ray lasers seeded with high-order harmonic radiation through Maxwell–Bloch numerical simulations. Phys. Rev. Lett. 99, 123902 (2007).

    ADS  Article  Google Scholar 

  5. 5

    Kim, C. M., Lee, J. & Janulewicz, K. A. Coherent amplification of an ultrashort pulse in high and swept gain medium with level degeneracy. Phys. Rev. Lett. 104, 053901 (2010).

    ADS  Article  Google Scholar 

  6. 6

    Oliva, E. et al. A proposal for multi-tens of GW fully coherent femtosecond soft X-ray lasers. Nature Photon. 6, 764–767 (2012).

    ADS  Article  Google Scholar 

  7. 7

    Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photon. 1, 336–342 (2007).

    ADS  Article  Google Scholar 

  8. 8

    McNeil, B. W. J. & Thompson, N. R. X-ray free-electron lasers. Nature Photon. 4, 814–821 (2010).

    ADS  Article  Google Scholar 

  9. 9

    Wang, Y. et al. Demonstration of high-repetition-rate tabletop soft-X-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm. Phys. Rev. A 72, 053807 (2005).

    ADS  Article  Google Scholar 

  10. 10

    Mocek, T. et al. Dramatic enhancement of XUV laser output using a multimode gas-filled capillary waveguide. Phys. Rev. A 71, 013804 (2005).

    ADS  Article  Google Scholar 

  11. 11

    Cassou, K. et al. Optimization toward a high-average-brightness soft-X-ray laser pumped at grazing incidence. Opt. Lett. 32, 139–141 (2007).

    ADS  Article  Google Scholar 

  12. 12

    Kim, H. T. et al. Demonstration of a saturated Ni-like Ag X-ray laser pumped by a single profiled laser pulse from a 10-Hz Ti:sapphire laser system. Phys. Rev. A 77, 023807 (2008).

    ADS  Article  Google Scholar 

  13. 13

    Nishikino, M. et al. Characterization of a high brilliance soft X-ray laser at 13.9 nm by use of an oscillator–amplifier configuration. Appl. Opt. 47, 1129–1134 (2008).

    ADS  Article  Google Scholar 

  14. 14

    Grünig, M., Imesch, C., Staub, F. & Balmer, J. E. Saturated X-ray lasing in Ni-like Sn at 11.9 nm using the GRIP scheme. Opt. Commun. 282, 267–271 (2009).

    ADS  Article  Google Scholar 

  15. 15

    Alessi, D. et al. Efficient excitation of gain-saturated sub-9 nm wavelength tabletop soft-X-ray lasers and lasing down to 7.36 nm. Phys. Rev. X 1, 021023 10.1103/PhysRevX.1.021023(2011).

    Google Scholar 

  16. 16

    Reagan, B. A. et al. Demonstration of a 100 Hz repetition rate gain-saturated diode-pumped table-top soft X-ray laser. Opt. Lett. 37, 3624–3626 (2012).

    ADS  Article  Google Scholar 

  17. 17

    Popmintchev, T., Chen, M.-C., Arpin, P., Murnane, M. M. & Kapteyn, H. C. The attosecond nonlinear optics of bright coherent X-ray generation. Nature Photon. 4, 822–832 (2010).

    ADS  Article  Google Scholar 

  18. 18

    Takashi, E. J., Kanai, T., Ishikawa, K. L., Nabekawa, Y. & Midorikawa, K. Dramatic enhancement of high-order harmonic generation. Phys. Rev. Lett. 99, 053904 (2007).

    ADS  Article  Google Scholar 

  19. 19

    Dromey, B. et al. High harmonic generation in the relativistic limit. Nature Phys. 2, 456–459 (2006).

    ADS  Article  Google Scholar 

  20. 20

    Rus, B. et al. Multimillijoule, highly coherent X-ray laser at 21 nm operating in deep saturation through double-pass amplification. Phys. Rev. A 66, 063806 (2002).

    ADS  Article  Google Scholar 

  21. 21

    Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 447–449 (1985).

    ADS  Article  Google Scholar 

  22. 22

    Oliva, E. et al. Soft X-ray plasma-based seeded multistage amplification chain. Opt. Lett. 37, 4341–4343 (2012).

    ADS  Article  Google Scholar 

  23. 23

    Wang, Y. et al. Measurement of 1-ps soft-X-ray laser pulses from an injection-seeded plasma amplifier. Phys. Rev. A 79, 023810 (2009).

    ADS  Article  Google Scholar 

  24. 24

    Sureau, A. & Holden, P. B. From amplification of spontaneous emission to saturation in X-ray lasers: a Maxwell–Bloch treatment. Phys. Rev. A 52, 3110–3125 (1995).

    ADS  Article  Google Scholar 

  25. 25

    Tallents, G. J. The physics of soft X-ray lasers pumped by electron collisions in laser plasmas. J. Phys. D 36, R259–R276 (2003).

    ADS  Article  Google Scholar 

  26. 26

    Luther, B. M. et al. Saturated high-repetition-rate 18.9-nm tabletop laser in nickellike molybdenum. Opt. Lett. 30, 165–167 (2005).

    ADS  Article  Google Scholar 

  27. 27

    Keenan, R. et al. High-repetition-rate grazing-incidence pumped X-ray laser operating at 18.9 nm. Phys. Rev. Lett. 94, 103901 (2005).

    ADS  Article  Google Scholar 

  28. 28

    Oliva, E. et al. Comparison of natural and forced amplification regimes in plasma-based soft-X-ray lasers seeded by high-order harmonics. Phys. Rev. A 84, 013811 (2011).

    ADS  Article  Google Scholar 

  29. 29

    Larroche, O. et al. Maxwell–Bloch modeling of X-ray-laser-signal buildup in single- and double-pass configurations. Phys. Rev. A 62, 043815 (2000).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Fajardo and S. Sebban for discussions. This work was supported by the AMOS programme of the Office of Basic Energy Sciences, US Department of Energy, using equipment developed at the NSF ERC for Extreme Ultraviolet Science and Technology (NSF award MRI-ARRA 09-561) and by the LASERLAB3-INREX European project and SHYLAX plus CIBOR RTRA ‘Triangle de la Physique’ programmes.

Author information

Affiliations

Authors

Contributions

The concept of the experiment was proposed by Ph.Z. and the experiment was designed by J.J.R., Y.W., S.W., J.D. and Ph.Z. Modelling was performed by E.O., T.T.T.L., M.B., L.L., C.P., D.R. and Ph.Z. The experiment was set and realized by Y.W., S.W., L.L., M.B., L.Y., J.N., B.M.L. and J.J.R. All authors participated in data treatment and writing the article.

Corresponding authors

Correspondence to Ph. Zeitoun or J. J. Rocca.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 741 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, S., Oliva, E. et al. Gain dynamics in a soft-X-ray laser amplifier perturbed by a strong injected X-ray field. Nature Photon 8, 381–384 (2014). https://doi.org/10.1038/nphoton.2014.79

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing