Shape-induced force fields in optical trapping

Abstract

Advances in optical tweezers, coupled with the proliferation of two-photon polymerization systems, mean that it is now becoming routine to fabricate and trap non-spherical particles. The shaping of both light beams and particles allows fine control over the flow of momentum from the optical to mechanical regimes. However, understanding and predicting the behaviour of such systems is highly complex in comparison with the traditional optically trapped microsphere. In this Article, we present a conceptually new and simple approach based on the nature of the optical force density. We illustrate the method through the design and fabrication of a shaped particle capable of acting as a passive force clamp, and we demonstrate its use as an optically trapped probe for imaging surface topography. Further applications of the design rules highlighted here may lead to new sensors for probing biomolecule mechanics, as well as to the development of optically actuated micromachines.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: T-matrix calculations showing the effect of particle shape on optical force in a Gaussian beam.
Figure 2: Experimentally measured force–displacement profiles of horizontally trapped cylinders and tapers.
Figure 3: Using a shaped particle as a scanning probe to image surface topography.

References

  1. 1

    Ashkin, A., Dziedzic, J., Bjorkholm, J. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    ADS  Google Scholar 

  2. 2

    Block, S. M., Goldstein, L. S. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).

    ADS  Google Scholar 

  3. 3

    Glückstad, J. Optical manipulation: sculpting the object. Nature Photon. 5, 7–8 (2010).

    ADS  Google Scholar 

  4. 4

    Simpson, S. H. & Hanna, S. Stability analysis and thermal motion of optically trapped nanowires. Nanotechnology 23, 205502 (2012).

    ADS  Google Scholar 

  5. 5

    Galajda, P. & Ormos, P. Rotors produced and driven in laser tweezers with reversed direction of rotation. Appl. Phys. Lett. 80, 4653–4655 (2002).

    ADS  Google Scholar 

  6. 6

    La Porta, A. & Wang, M. D. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett. 92, 190801 (2004).

    ADS  Google Scholar 

  7. 7

    Jannasch, A., Demirörs, A. F., van Oostrum, P. D., van Blaaderen, A. & Schäffer, E. Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nature Photon. 6, 469–473 (2012).

    ADS  Google Scholar 

  8. 8

    Swartzlander G. A. Jr, Peterson, T. J., Artusio-Glimpse, A. B. & Raisanen, A. D. Stable optical lift. Nature Photon. 5, 48–51 (2010).

    ADS  Google Scholar 

  9. 9

    Simpson, S. H., Hanna, S., Peterson, T. J. & Swartzlander, G. A. Optical lift from dielectric semicylinders. Opt. Lett. 37, 4038–4040 (2012).

    ADS  Google Scholar 

  10. 10

    Bishop, A. I., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett. 92, 198104 (2004).

    ADS  Google Scholar 

  11. 11

    Trojek, J., Karasek, V. & Zemanek, P. Extreme axial optical force in a standing wave achieved by optimized object shape. Opt. Express 17, 10472–10488 (2009).

    ADS  Google Scholar 

  12. 12

    Palima, D. et al. Wave-guided optical waveguides. Opt. Express 20, 2004–2014 (2012).

    ADS  Google Scholar 

  13. 13

    Nieminen, T. A. et al. Optical tweezers computational toolbox. J. Opt. A 9, S196–S203 (2007).

    ADS  Google Scholar 

  14. 14

    Bowman, R. W. & Padgett, M. J. Optical trapping and binding. Rep. Prog. Phys. 76, 026401 (2013).

    ADS  Google Scholar 

  15. 15

    Pfeifer, R. N., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Colloquium: momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 79, 1197 (2007).

    ADS  Google Scholar 

  16. 16

    Mansuripur, M. & Zakharian, A. R. Radiation pressure on a submerged absorptive partial reflector deduced from the Doppler shift. Phys. Rev. A 86, 013841 (2012).

    ADS  Google Scholar 

  17. 17

    Brevik, I. Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor. Phys. Rep. 52, 133–201 (1979).

    ADS  Google Scholar 

  18. 18

    Brevik, I. & Ellingsen, S. Transverse radiation force in a tailored optical fiber. Phys. Rev. A 81, 011806 (2010).

    ADS  Google Scholar 

  19. 19

    Van Bladel, J. Singular Electromagnetic Fields and Sources (Clarendon, 1991).

    Google Scholar 

  20. 20

    Simmons, R. M., Finer, J. T., Chu, S. & Spudich, J. A. Quantitative measurements of force and displacement using an optical trap. Biophys. J. 70, 1813–1822 (1996).

    ADS  Google Scholar 

  21. 21

    Phillips, D. et al. Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking. J. Opt. 13, 044023 (2011).

    ADS  Google Scholar 

  22. 22

    Cumpston, B. H. et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999).

    ADS  Google Scholar 

  23. 23

    Bowman, R., Gibson, G. & Padgett, M. Particle tracking stereomicroscopy in optical tweezers: control of trap shape. Opt. Express 18, 11785–11790 (2010).

    ADS  Google Scholar 

  24. 24

    Phillips, D. B. et al. An optically actuated surface scanning probe. Opt. Express 20, 29679–29693 (2012).

    ADS  Google Scholar 

  25. 25

    Wang, F. et al. Resolving stable axial trapping points of nanowires in an optical tweezers using photoluminescence mapping. Nano Lett. 13, 1185–1191 (2013).

    ADS  Google Scholar 

  26. 26

    Ghislain, L. P. & Webb, W. W. Scanning-force microscope based on an optical trap. Opt. Lett. 18, 1678–1680 (1993).

    ADS  Google Scholar 

  27. 27

    Friese, M. E. J., Truscott, A. G., Rubinsztein-Dunlop, H. & Heckenberg, N. R. Three-dimensional imaging with optical tweezers. Appl. Opt. 38, 6597–6603 (1999).

    ADS  Google Scholar 

  28. 28

    Seitz, P. C., Stelzer, E. H. K. & Rohrbach, A. Interferometric tracking of optically trapped probes behind structured surfaces: a phase correction method. Appl. Opt. 45, 7309–7315 (2006).

    ADS  Google Scholar 

  29. 29

    Phillips, D. B. et al. Surface imaging using holographic optical tweezers. Nanotechnology 22, 285503 (2011).

    Google Scholar 

  30. 30

    Simpson, S. H., Phillips, D. B., Carberry, D. M. & Hanna, S. Bespoke optical springs and passive force clamps from shaped dielectric particles. J. Quant. Spectrosc. Radiat. Transf. 126, 91–98 (2012).

    ADS  Google Scholar 

  31. 31

    Greenleaf, W. J., Woodside, M. T., Abbondanzieri, E. A. & Block, S. M. Passive all-optical force clamp for high-resolution laser trapping. Phys. Rev. Lett. 95, 208102 (2005).

    ADS  Google Scholar 

  32. 32

    Palima, D. et al. Optical forces through guided light deflections. Opt. Express 21, 581–593 (2013).

    ADS  Google Scholar 

  33. 33

    Maragò, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G. & Ferrari, A. C. Optical trapping and manipulation of nanostructures. Nature Nanotech. 8, 807–819 (2013).

    ADS  Google Scholar 

  34. 34

    Mishchenko, M. I., Hovenier, J. W. & Travis, L. D. Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 1999).

    Google Scholar 

  35. 35

    Kahnert, F. M. Numerical methods in electromagnetic scattering theory. J. Quant. Spectrosc. Radiat. Transf. 79, 775–824 (2003).

    ADS  Google Scholar 

  36. 36

    Hafner, C. The Generalized Multipole Technique for Computational Electromagnetics (Artech House, 1990).

    Google Scholar 

  37. 37

    Nieminen, T., Rubinsztein-Dunlop, H. & Heckenberg, N. Calculation of the T-matrix: general considerations and application of the point-matching method. J. Quant. Spectrosc. Radiat. Transf. 79, 1019–1029 (2003).

    ADS  Google Scholar 

  38. 38

    Lock, J. A. & Gouesbet, G. Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams. J. Opt. Soc. Am. A 11, 2503–2515 (1994).

    ADS  MathSciNet  Google Scholar 

  39. 39

    Chen, J., Ng, J., Lin, Z. & Chan, C. Optical pulling force. Nature Photon. 5, 531–534 (2011).

    ADS  Google Scholar 

  40. 40

    Pfeifer, R. N., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical tweezers and paradoxes in electromagnetism. J. Opt. 13, 044017 (2011).

    ADS  Google Scholar 

  41. 41

    Carrasco, B. & García de la Torre, J. Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures. Biophys. J. 76, 3044–3057 (1999).

    Google Scholar 

  42. 42

    Phillips, D. B. et al. Optical Trapping and Optical Micromanipulation X 8810-80 (SPIE, 2013).

    Google Scholar 

Download references

Acknowledgements

This work was funded through the Engineering and Physical Sciences Research Council, UK (grant nos. EP/I010785/1 and EP/I007822/1). It was carried out with the support of the Bristol Centre for Nanoscience and Quantum Information and using the computational facilities of the Advanced Computing Research Centre, University of Bristol (http://www.bris.ac.uk/acrc/). The authors thank J. Rarity for the use of the Nanoscribe Photonic Professional direct write laser lithography system for structure fabrication, and Sarah Dolan for support with illustrations. M.J.M. and M.J.P. acknowledge Royal Society Wolfson Merit Awards.

Author information

Affiliations

Authors

Contributions

D.B.P. fabricated the structures and designed and performed all experiments and analysis. S.H.S. formulated the concept of relating shape to optical force and performed all theoretical calculations, with support from S.H. Y.-L.D.H. assisted with structure fabrication. M.J.P. provided support to the optical tweezers apparatus. M.J.M., M.J.P. and D.M.C. developed the concept of the scanning probe application. S.H.S., D.B.P. and S.H. wrote the paper, and all other authors provided editorial input.

Corresponding author

Correspondence to D. B. Phillips.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 264 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Phillips, D., Padgett, M., Hanna, S. et al. Shape-induced force fields in optical trapping. Nature Photon 8, 400–405 (2014). https://doi.org/10.1038/nphoton.2014.74

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing