Diamond nonlinear photonics

Abstract

Despite progress towards integrated diamond photonics1,2,3,4, studies of optical nonlinearities in diamond have been limited to Raman scattering in bulk samples5. Diamond nonlinear photonics, however, could enable efficient, in situ frequency conversion of single photons emitted by diamond's colour centres6,7, as well as stable and high-power frequency microcombs8 operating at new wavelengths. Both of these applications depend crucially on efficient four-wave mixing processes enabled by diamond's third-order nonlinearity. Here, we have realized a diamond nonlinear photonics platform by demonstrating optical parametric oscillation via four-wave mixing using single-crystal ultrahigh-quality-factor (1 × 106) diamond ring resonators operating at telecom wavelengths. Threshold powers as low as 20 mW are measured, and up to 20 new wavelengths are generated from a single-frequency pump laser. We also report the first measurement of the nonlinear refractive index due to the third-order nonlinearity in diamond at telecom wavelengths.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Integrated ultrahigh-Q SCD ring resonators.
Figure 2: OPO spectrum as a function of blue-detuning from resonance.
Figure 3: OPO spectra for different pump wavelengths.
Figure 4: Parametric oscillation threshold and its dependence on Q-factor.
Figure 5: Broadband anomalous dispersion of diamond waveguides embedded in silica.

References

  1. 1

    Aharonovich, I., Greentree, A. D. & Prawer, S. Diamond photonics. Nature Photon. 5, 397–405 (2011).

    ADS  Article  Google Scholar 

  2. 2

    Zaitsev, A. M. Optical Properties of Diamond: A Data Handbook (Springer-Verlag, 2001).

    Google Scholar 

  3. 3

    Faraon, A., Barclay, P. E., Santori, C., Fu, K.-M. C. & Beausoleil, R. G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photon. 5, 301–305 (2011).

    ADS  Article  Google Scholar 

  4. 4

    Hausmann, B. J. M. et al. Integrated diamond networks for quantum nanophotonics. Nano Lett. 12, 1578–1582 (2012).

    ADS  Article  Google Scholar 

  5. 5

    Mildren, R. P., Butler, J. E. & Rabeau, J. R. CVD-diamond external cavity Raman laser at 573 nm. Opt. Express 16, 18950–18955 (2008).

    ADS  Article  Google Scholar 

  6. 6

    McCutcheon, M. W., Chang, D. E., Zhang, Y., Lukin, M. D. & Lončar, M. Broad-band spectral control of single photon sources using a nonlinear photonic crystal cavity. Opt. Express 17, 22689–22703 (2009).

    ADS  Article  Google Scholar 

  7. 7

    Huang, Y.-P., Velev, V. & Kumar, P. Quantum frequency conversion in nonlinear microcavities. Opt. Lett. 38, 2119–2121 (2013).

    ADS  Article  Google Scholar 

  8. 8

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    ADS  Article  Google Scholar 

  9. 9

    Hausmann, B. J. M. et al. Integrated high-quality factor optical resonators in diamond. Nano Lett. 13, 1898–1902 (2013).

    ADS  Article  Google Scholar 

  10. 10

    Nebel, C. & Ristein, J. Semiconductors and Semimetals: Thin-Film Diamond I (Elsevier Academic, 2004).

    Google Scholar 

  11. 11

    Levenson, M. D. & Bloembergen, N. Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media. Phys. Rev. B 10, 4447–4464 (1974).

    ADS  Article  Google Scholar 

  12. 12

    Boyd, R. W. Nonlinear Optics (Academic, 2008).

    Google Scholar 

  13. 13

    Ferrera, M. et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nature Photon. 2, 737–740 (2008).

    ADS  Article  Google Scholar 

  14. 14

    Turner, A. C., Foster, M. A., Gaeta, A. L. & Lipson, M. Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Express 16, 4881–4887 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon. 4, 37–40 (2010).

    ADS  Article  Google Scholar 

  16. 16

    Hartl, I., Imeshev, G., Fermann, M. E., Langrock, C. & Fejer, M. M. Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology. Opt. Express 13, 6490–6496 (2005).

    ADS  Article  Google Scholar 

  17. 17

    Jung, H., Xiong, C., Fong, K. Y., Zhang, X. & Tang, H. X. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett. 38, 2810–2813 (2013).

    ADS  Article  Google Scholar 

  18. 18

    Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    ADS  Article  Google Scholar 

  19. 19

    Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photon. 4, 41–45 (2010).

    ADS  Article  Google Scholar 

  20. 20

    Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    ADS  Article  Google Scholar 

  21. 21

    Lavoie, J., Donohue, J. M., Wright, L. G., Fedrizzi, A. & Resch, K. J. Spectral compression of single photons. Nature Photon. 7, 363–366 (2013).

    ADS  Article  Google Scholar 

  22. 22

    Raymer, M. G. & Srinivasan, K. A. Manipulating the color and shape of single photons. Phys. Today 65, 32–37 (2012).

    Article  Google Scholar 

  23. 23

    Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    ADS  Article  Google Scholar 

  24. 24

    Hansryd, J., Andrekson, A., Westlund, M., Li, J. & Hedekvist, P. Fiber-based optical parametric amplifiers and their applications. IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).

    ADS  Article  Google Scholar 

  25. 25

    Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    ADS  Article  Google Scholar 

  26. 26

    Absil, P. P. et al. Wavelength conversion in GaAs micro-ring resonators. Opt. Lett. 25, 554–556 (2000).

    ADS  Article  Google Scholar 

  27. 27

    Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    ADS  Article  Google Scholar 

  28. 28

    Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photon. 6, 480–487 (2012).

    ADS  Article  Google Scholar 

  29. 29

    Deotare, P. B. et al. All optical reconfiguration of optomechanical filters. Nature Commun. 3, 846 (2012).

    ADS  Article  Google Scholar 

  30. 30

    Collot, L., Lefevre-Seguin, V., Brune, M., Raimond, J. M. & Haroche, S. Very high-Q whispering-gallery mode resonances observed on fused silica microspheres. Europhys. Lett. 23, 327–334 (1993).

    ADS  Article  Google Scholar 

  31. 31

    Del'Haye, P., Arcizet, O., Schliesser, A., Holzwarth, R. & Kippenberg, T. J. Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett. 101, 053903 (2008).

    ADS  Article  Google Scholar 

  32. 32

    Matsko, A. B., Savchenkov, A. A., Strekalov, D., Ilchenko, V. S. & Maleki, L. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion. Phys. Rev. A 71, 033904 (2005).

    ADS  Article  Google Scholar 

  33. 33

    Foster, M. A. et al. Silicon-based monolithic optical frequency comb source. Opt. Express 19, 14233–14239 (2011).

    ADS  Article  Google Scholar 

  34. 34

    Savchenkov, A. A. et al. Kerr combs with selectable central frequency. Nature Photon. 5, 293–296 (2011).

    ADS  Article  Google Scholar 

  35. 35

    Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003).

    ADS  Article  Google Scholar 

  36. 36

    Lee, C. L., Gu, E., Dawson, M. D., Friel, I. & Scarsbrook, G. A. Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma. Diam. Relat. Mater. 17, 1292–1296 (2008).

    ADS  Article  Google Scholar 

  37. 37

    Hausmann, B. J. M. et al. Fabrication of diamond nanowires for quantum information processing applications. Diam. Relat. Mater. 19, 621–629 (2010).

    ADS  Article  Google Scholar 

  38. 38

    Maletinsky, P. et al. A robust scanning quantum sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotech. 7, 320–324 (2012).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Devices were fabricated in the Center for Nanoscale Systems (CNS) at Harvard. The authors thank Z. Lin for the single-photon conversion estimates, T. Kippenberg, R. Walsworth and M. Lukin for discussions, and D. Twitchen and M. Markham from Element Six for help with diamond samples. B.J.M.H. acknowledges support from the Harvard Quantum Optics Center (HQOC). This work was supported in part by the National Science Foundation (ECCS-1202157), AFOSR MURI (grant no. FA9550-12-1-0025) and the DARPA QuINESS programme.

Author information

Affiliations

Authors

Contributions

B.J.M.H., I.B. and V.V. contributed equally to this work. M.L. and I.B. conceived and, together with B.J.M.H. and V.V., designed the experiment. The theoretical studies, numerical modelling and design were carried out by I.B. and V.V. Devices were fabricated by B.J.M.H., V.V. and P.D., who also performed the experiments. Data were analysed by B.J.M.H. and V.V. and discussed by all authors. B.J.M.H., V.V. and M.L. wrote the manuscript in discussion with all authors. M.L. is the principal investigator of the project.

Corresponding author

Correspondence to M. Lončar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hausmann, B., Bulu, I., Venkataraman, V. et al. Diamond nonlinear photonics. Nature Photon 8, 369–374 (2014). https://doi.org/10.1038/nphoton.2014.72

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing