Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent terabit communications with microresonator Kerr frequency combs


Optical frequency combs have the potential to revolutionize terabit communications1. The generation of Kerr combs in nonlinear microresonators2 is particularly promising3, enabling line spacings of tens of gigahertz. However, such combs may exhibit strong phase noise4,5,6, which has made high-speed data transmission impossible up to now. Here, we demonstrate that systematic adjustment of the pump conditions for low phase noise4,7,8,9 enables coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the comb. In a first experiment, we encode a data stream of 392 Gbit s−1 on a Kerr comb using quadrature phase-shift keying and 16-state quadrature amplitude modulation. A second experiment demonstrates feedback stabilization of the comb and transmission of a 1.44 Tbit s–1 data stream over up to 300 km. The results show that Kerr combs meet the highly demanding requirements of coherent communications and thus offer an attractive route towards chip-scale terabit-per-second transceivers.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Principles of coherent terabit-per-second communications with Kerr frequency combs.
Figure 2: Comb generation set-up.
Figure 3: Coherent data transmission using a Kerr microresonator frequency comb.
Figure 4: Coherent terabit-per-second data transmission using a feedback-stabilized Kerr frequency comb.


  1. Hillerkuss, D. et al. 26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nature Photon. 5, 364–371 (2011).

    ADS  Article  Google Scholar 

  2. Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    ADS  Article  Google Scholar 

  3. Levy, J. et al. High-performance silicon-nitride-based multiple-wavelength source. IEEE Photon. Technol. Lett. 24, 1375–1377 (2012).

    ADS  Article  Google Scholar 

  4. Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photon. 6, 480–487 (2012).

    ADS  Article  Google Scholar 

  5. Pfeifle, J. et al. in Optical Fiber Communication Conference, paper OW1C.4 (Optical Society of America, 2012).

    Google Scholar 

  6. Wang, P.-H. et al. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. Opt. Express 20, 29284–29295 (2012).

    ADS  Article  Google Scholar 

  7. Herr, T. et al. Temporal solitons in optical microresonators. Nature Photon. 8, 145–152 (2014).

    ADS  Article  Google Scholar 

  8. Li, J., Lee, H., Chen, T. & Vahala, K. J. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109, 233901 (2012).

    ADS  Article  Google Scholar 

  9. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    ADS  Article  Google Scholar 

  10. Miller, D. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    Article  Google Scholar 

  11. Qian, D. et al. in Optical Fiber Communication Conference, paper PDPB5 (Optical Society of America, 2011).

    Google Scholar 

  12. Hochberg, M. & Baehr-Jones, T. Towards fabless silicon photonics. Nature Photon. 4, 492–494 (2010).

    ADS  Article  Google Scholar 

  13. Liu, A. et al. Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform. IEEE J. Sel. Top. Quant. 16, 23–32 (2010).

    Article  Google Scholar 

  14. Feng, D., Qian, W., Liang, H., Luff, J. & Asghari, M. High speed receiver technology on the SOI platform. IEEE J. Sel. Top. Quant. 19, 3800108 (2013).

    Article  Google Scholar 

  15. Nagarajan, R. et al. InP photonic integrated circuits. IEEE J. Sel. Top. Quant. 16, 1113–1125 (2010).

    Article  Google Scholar 

  16. Park, H., Fang, A., Kodama, S. & Bowers, J. Hybrid silicon evanescent laser fabricated with a silicon waveguide and III–V offset quantum wells. Opt. Express 13, 9460–9464 (2005).

    ADS  Article  Google Scholar 

  17. Witzens, J., Baehr-Jones, T. & Hochberg, M. Silicon photonics: on-chip OPOs. Nature Photon. 4, 10–12 (2010).

    ADS  Article  Google Scholar 

  18. Hillerkuss, D. et al. Single-laser 32.5 Tbit/s Nyquist WDM transmission. J. Opt. Commun. Netw. 4, 715–723 (2012).

    Article  Google Scholar 

  19. Wu, R., Supradeepa, V. R., Long, C. M., Leaird, D. E. & Weiner, A. M. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 35, 3234–3236 (2010).

    ADS  Article  Google Scholar 

  20. Rosales, R. et al. InAs/InP quantum-dot passively mode-locked lasers for 1.55-µm applications. IEEE J. Sel. Top. Quant. 17, 1292–1301 (2011).

    Article  Google Scholar 

  21. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    ADS  Article  Google Scholar 

  22. Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

    ADS  Article  Google Scholar 

  23. Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photon. 4, 41–45 (2010).

    ADS  Article  Google Scholar 

  24. Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon. 4, 37–40 (2010).

    ADS  Article  Google Scholar 

  25. Lindenmann, N. et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express 20, 17667–17677 (2012).

    ADS  Article  Google Scholar 

  26. Dong, P., Chen, L., Xie, C., Buhl, L. L. & Chen, Y.-K. 50-Gb/s silicon quadrature phase-shift keying modulator. Opt. Express 20, 21181–21186 (2012).

    ADS  Article  Google Scholar 

  27. Korn, D. et al. Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s. Opt. Express 21, 13219–13227 (2013).

    ADS  Article  Google Scholar 

  28. Schmogrow, R. et al. Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM. Opt. Express 20, 317–337 (2012).

    ADS  Article  Google Scholar 

  29. Essiambre, R.-J., Kramer, G., Winzer, P., Foschini, G. & Goebel, B. Capacity limits of optical fiber networks. J. Lightwave Technol. 28, 662–701 (2010).

    ADS  Article  Google Scholar 

  30. Carmon, T., Yang, L. & Vahala, K. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    ADS  Article  Google Scholar 

Download references


This work was supported by the European Research Council (ERC starting grant ‘EnTeraPIC’, no. 280145), the Alfried Krupp von Bohlen und Halbach Foundation, the Helmholtz International Research School for Teratronics (HIRST), the EU-FP7 project BigPipes, the Initiative and Networking Fund of the Helmholtz Association, the Center for Functional Nanostructures (CFN) of the Deutsche Forschungsgemeinschaft (DFG) (project A 4.8), the DFG Major Research Instrumentation Programme, the Karlsruhe Nano-Micro Facility (KNMF), the Karlsruhe School of Optics & Photonics (KSOP), the Swiss National Science Foundation (NCCR Nano-Tera, NTF MCOMB), the Marie Curie IAPP Action, the Defense Advanced Research Projects Agency (DARPA) via the QuASAR programme and the European Space Agency (ESA) via a doctoral fellowship (to V.B.). Samples were fabricated at the EPFL Center for Micro- and Nanotechnology (CMi).

Author information

Authors and Affiliations



J.P. conceived and performed the data transmission experiments and analysed the data. V.B. and K.H. conceived, designed and fabricated the devices, which were characterized jointly by V.B. and T.H. M.L., Y.Y., D.W., P.S. and C.W. performed the data transmission experiments and analysed the data. The feedback stabilization of the comb source for the second experiment was implemented jointly by J.P. and Y.Y. J.Li, D.H. and R.S. contributed subsystems to the data transmission experiments. The project was supervised by R.H., W.F., J.L., T.J.K. and C.K. T.J.K. conceived and supervised the comb generation scheme and fabrication of the devices, C.K. conceived the data transmission and comb stabilization schemes and supervised the experiments. All authors discussed the data and wrote the manuscript jointly.

Corresponding authors

Correspondence to Tobias J. Kippenberg or Christian Koos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 744 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pfeifle, J., Brasch, V., Lauermann, M. et al. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photon 8, 375–380 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing