Optical frequency combs have the potential to revolutionize terabit communications1. The generation of Kerr combs in nonlinear microresonators2 is particularly promising3, enabling line spacings of tens of gigahertz. However, such combs may exhibit strong phase noise4,5,6, which has made high-speed data transmission impossible up to now. Here, we demonstrate that systematic adjustment of the pump conditions for low phase noise4,7,8,9 enables coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the comb. In a first experiment, we encode a data stream of 392 Gbit s−1 on a Kerr comb using quadrature phase-shift keying and 16-state quadrature amplitude modulation. A second experiment demonstrates feedback stabilization of the comb and transmission of a 1.44 Tbit s–1 data stream over up to 300 km. The results show that Kerr combs meet the highly demanding requirements of coherent communications and thus offer an attractive route towards chip-scale terabit-per-second transceivers.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    et al. 26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nature Photon. 5, 364–371 (2011).

  2. 2.

    et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

  3. 3.

    et al. High-performance silicon-nitride-based multiple-wavelength source. IEEE Photon. Technol. Lett. 24, 1375–1377 (2012).

  4. 4.

    et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photon. 6, 480–487 (2012).

  5. 5.

    et al. in Optical Fiber Communication Conference, paper OW1C.4 (Optical Society of America, 2012).

  6. 6.

    et al. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. Opt. Express 20, 29284–29295 (2012).

  7. 7.

    et al. Temporal solitons in optical microresonators. Nature Photon. 8, 145–152 (2014).

  8. 8.

    , , & Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109, 233901 (2012).

  9. 9.

    et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

  10. 10.

    Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

  11. 11.

    et al. in Optical Fiber Communication Conference, paper PDPB5 (Optical Society of America, 2011).

  12. 12.

    & Towards fabless silicon photonics. Nature Photon. 4, 492–494 (2010).

  13. 13.

    et al. Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform. IEEE J. Sel. Top. Quant. 16, 23–32 (2010).

  14. 14.

    , , , & High speed receiver technology on the SOI platform. IEEE J. Sel. Top. Quant. 19, 3800108 (2013).

  15. 15.

    et al. InP photonic integrated circuits. IEEE J. Sel. Top. Quant. 16, 1113–1125 (2010).

  16. 16.

    , , & Hybrid silicon evanescent laser fabricated with a silicon waveguide and III–V offset quantum wells. Opt. Express 13, 9460–9464 (2005).

  17. 17.

    , & Silicon photonics: on-chip OPOs. Nature Photon. 4, 10–12 (2010).

  18. 18.

    et al. Single-laser 32.5 Tbit/s Nyquist WDM transmission. J. Opt. Commun. Netw. 4, 715–723 (2012).

  19. 19.

    , , , & Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 35, 3234–3236 (2010).

  20. 20.

    et al. InAs/InP quantum-dot passively mode-locked lasers for 1.55-µm applications. IEEE J. Sel. Top. Quant. 17, 1292–1301 (2011).

  21. 21.

    , & Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

  22. 22.

    et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

  23. 23.

    et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photon. 4, 41–45 (2010).

  24. 24.

    et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon. 4, 37–40 (2010).

  25. 25.

    et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express 20, 17667–17677 (2012).

  26. 26.

    , , , & 50-Gb/s silicon quadrature phase-shift keying modulator. Opt. Express 20, 21181–21186 (2012).

  27. 27.

    et al. Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s. Opt. Express 21, 13219–13227 (2013).

  28. 28.

    et al. Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM. Opt. Express 20, 317–337 (2012).

  29. 29.

    , , , & Capacity limits of optical fiber networks. J. Lightwave Technol. 28, 662–701 (2010).

  30. 30.

    , & Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

Download references


This work was supported by the European Research Council (ERC starting grant ‘EnTeraPIC’, no. 280145), the Alfried Krupp von Bohlen und Halbach Foundation, the Helmholtz International Research School for Teratronics (HIRST), the EU-FP7 project BigPipes, the Initiative and Networking Fund of the Helmholtz Association, the Center for Functional Nanostructures (CFN) of the Deutsche Forschungsgemeinschaft (DFG) (project A 4.8), the DFG Major Research Instrumentation Programme, the Karlsruhe Nano-Micro Facility (KNMF), the Karlsruhe School of Optics & Photonics (KSOP), the Swiss National Science Foundation (NCCR Nano-Tera, NTF MCOMB), the Marie Curie IAPP Action, the Defense Advanced Research Projects Agency (DARPA) via the QuASAR programme and the European Space Agency (ESA) via a doctoral fellowship (to V.B.). Samples were fabricated at the EPFL Center for Micro- and Nanotechnology (CMi).

Author information

Author notes

    • David Hillerkuss
    •  & Juerg Leuthold

    Present address: Electromagnetic Fields & Microwave Electronics Laboratory (IFH), ETH Zurich, 8092 Zurich, Switzerland


  1. Institute of Photonics and Quantum Electronics (IPQ) and Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

    • Joerg Pfeifle
    • , Matthias Lauermann
    • , Yimin Yu
    • , Daniel Wegner
    • , Philipp Schindler
    • , Jingshi Li
    • , David Hillerkuss
    • , Rene Schmogrow
    • , Claudius Weimann
    • , Wolfgang Freude
    • , Juerg Leuthold
    •  & Christian Koos
  2. École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

    • Victor Brasch
    • , Tobias Herr
    •  & Tobias J. Kippenberg
  3. Menlo Systems GmbH, 82152 Martinsried, Germany

    • Klaus Hartinger
    •  & Ronald Holzwarth


  1. Search for Joerg Pfeifle in:

  2. Search for Victor Brasch in:

  3. Search for Matthias Lauermann in:

  4. Search for Yimin Yu in:

  5. Search for Daniel Wegner in:

  6. Search for Tobias Herr in:

  7. Search for Klaus Hartinger in:

  8. Search for Philipp Schindler in:

  9. Search for Jingshi Li in:

  10. Search for David Hillerkuss in:

  11. Search for Rene Schmogrow in:

  12. Search for Claudius Weimann in:

  13. Search for Ronald Holzwarth in:

  14. Search for Wolfgang Freude in:

  15. Search for Juerg Leuthold in:

  16. Search for Tobias J. Kippenberg in:

  17. Search for Christian Koos in:


J.P. conceived and performed the data transmission experiments and analysed the data. V.B. and K.H. conceived, designed and fabricated the devices, which were characterized jointly by V.B. and T.H. M.L., Y.Y., D.W., P.S. and C.W. performed the data transmission experiments and analysed the data. The feedback stabilization of the comb source for the second experiment was implemented jointly by J.P. and Y.Y. J.Li, D.H. and R.S. contributed subsystems to the data transmission experiments. The project was supervised by R.H., W.F., J.L., T.J.K. and C.K. T.J.K. conceived and supervised the comb generation scheme and fabrication of the devices, C.K. conceived the data transmission and comb stabilization schemes and supervised the experiments. All authors discussed the data and wrote the manuscript jointly.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Tobias J. Kippenberg or Christian Koos.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history






Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing