Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix

Abstract

Luminescent solar concentrators are cost-effective complements to semiconductor photovoltaics that can boost the output of solar cells and allow for the integration of photovoltaic-active architectural elements into buildings (for example, photovoltaic windows). Colloidal quantum dots are attractive for use in luminescent solar concentrators, but their small Stokes shift results in reabsorption losses that hinder the realization of large-area devices. Here, we use ‘Stokes-shift-engineered’ CdSe/CdS quantum dots with giant shells (giant quantum dots) to realize luminescent solar concentrators without reabsorption losses for device dimensions up to tens of centimetres. Monte-Carlo simulations show a 100-fold increase in efficiency using giant quantum dots compared with core-only nanocrystals. We demonstrate the feasibility of this approach by using high-optical-quality quantum dot–polymethylmethacrylate nanocomposites fabricated using a modified industrial method that preserves the light-emitting properties of giant quantum dots upon incorporation into the polymer. Study of these luminescent solar concentrators yields optical efficiencies >10% and an effective concentration factor of 4.4. These results demonstrate the significant promise of Stokes-shift-engineered quantum dots for large-area luminescent solar concentrators.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: QD–LSC concept and electronic structure of thick-shell CdSe/CdS g-QDs.
Figure 2: Monte-Carlo ray-tracing simulations.
Figure 3: Optical properties of QD–PMMA nanocomposites.
Figure 4: Large-area LSC based on Stokes-shift-engineered QDs.

References

  1. 1

    Sargent, E. H. Colloidal quantum dot solar cells. Nature Photon. 6, 133–135 (2012).

    ADS  Google Scholar 

  2. 2

    Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    ADS  Google Scholar 

  3. 3

    NREL. Best Research Cell Efficiencies; available at http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (2014).

  4. 4

    Sun, B., Findikoglu, A. T., Sykora, M., Werder, D. J. & Klimov, V. I. Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon. Nano Lett. 9, 1235–1241 (2009).

    ADS  Google Scholar 

  5. 5

    Bomm, J. et al. Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators. Sol. Energ. Mater. Sol. Cell 95, 2087–2094 (2011).

    Google Scholar 

  6. 6

    Chatten, A. J., Barnham, K. W. J., Buxton, B. F., Ekins-Daukes, N. J. & Malik, M. A. Quantum dot solar concentrators. Semiconductors 38, 909–917 (2004).

    ADS  Google Scholar 

  7. 7

    Gallagher, S. J., Norton, B. & Eames, P. C. Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices. Sol. Energy 81, 813–821 (2007).

    ADS  Google Scholar 

  8. 8

    Sahin, D., Ilan, B. & Kelley, D. F. Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles. J. Appl. Phys. 110, 033108 (2011).

    ADS  Google Scholar 

  9. 9

    Shcherbatyuk, G. V., Inman, R. H., Wang, C., Winston, R. & Ghosh, S. Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators. Appl. Phys. Lett. 96, 191901 (2010).

    ADS  Google Scholar 

  10. 10

    Currie, M. J., Mapel, J. K., Heidel, T. D., Goffri, S. & Baldo, M. A. High-efficiency organic solar concentrators for photovoltaics. Science 321, 226–228 (2008).

    ADS  Google Scholar 

  11. 11

    Debije, M. G. & Verbunt, P. P. C. Solar concentrators: thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energy Mater. 2, 12–35 (2012).

    Google Scholar 

  12. 12

    Van Sark, W. G. J. H. M. et al. Luminescent solar concentrators—a review of recent results. Opt. Express 16, 21773–21792 (2008).

    ADS  Google Scholar 

  13. 13

    Chemisana, D. Building integrated concentrating photovoltaics: a review. Renew. Sust. Energ. Rev. 15, 603–611 (2011).

    Google Scholar 

  14. 14

    Goetzberger, A. & Greubel, W. Solar energy conversion with fluorescent collectors. Appl. Phys. 14, 123–139 (1977).

    ADS  Google Scholar 

  15. 15

    Purcell-Milton, F. & Gun'ko, Y. K. Quantum dots for luminescent solar concentrators. J. Mater. Chem. 22, 16687–16697 (2012).

    Google Scholar 

  16. 16

    Hyldahl, M. G., Bailey, S. T. & Wittmershaus, B. P. Photo-stability and performance of CdSe/ZnS quantum dots in luminescent solar concentrators. Sol. Energy 83, 566–573 (2009).

    ADS  Google Scholar 

  17. 17

    Petruska, M. A., Malko, A. V., Voyles, P. M. & Klimov, V. I. High-performance, quantum dot nanocomposites for nonlinear optical and optical gain applications. Adv. Mater. 15, 610–613 (2003).

    Google Scholar 

  18. 18

    Wood, V. et al. Inkjet-printed quantum dot–polymer composites for full-color AC-driven displays. Adv. Mater. 21, 2151–2155 (2009).

    Google Scholar 

  19. 19

    Tamborra, M. et al. Optical properties of hybrid composites based on highly luminescent CdS nanocrystals in polymer. Nanotechnology 15, S240–S244 (2004).

    Google Scholar 

  20. 20

    Otto, T. et al. Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity. Nano Lett. 12, 5348–5354 (2012).

    ADS  Google Scholar 

  21. 21

    Norris, D. J., Efros, A. L., Rosen, M. & Bawendi, M. G. Size dependence of exciton fine structure in CdSe quantum dots. Phys. Rev. B 53, 16347–16354 (1996).

    ADS  Google Scholar 

  22. 22

    Klimov, V. I. Nanocrystal Quantum Dots 2nd edn (Taylor & Francis, 2009).

    Google Scholar 

  23. 23

    Klimov, V. I. Spectral and dynamical properties of multilexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 58, 635–673 (2007).

    ADS  Google Scholar 

  24. 24

    Krumer, Z. et al. Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots. Sol. Energ. Mater. Sol. Cell. 111, 57–65 (2013).

    Google Scholar 

  25. 25

    Viswanatha, R., Brovelli, S., Pandey, A., Crooker, S. A. & Klimov, V. I. Copper-doped inverted core/shell nanocrystals with ‘permanent' optically active holes. Nano Lett. 11, 4753–4758 (2011).

    ADS  Google Scholar 

  26. 26

    Bryan, J. D. & Gamelin, D. R. Doped semiconductor nanocrystals: synthesis, characterization, physical properties, and applications. Prog. Inorg. Chem. 54, 47–126 (2005).

    Google Scholar 

  27. 27

    Sahu, A. et al. Electronic impurity doping in CdSe nanocrystals. Nano Lett. 12, 2587–2594 (2012).

    ADS  Google Scholar 

  28. 28

    Brovelli, S., Galland, C., Viswanatha, R. & Klimov, V. I. Tuning radiative recombination in Cu-doped nanocrystals via electrochemical control of surface trapping. Nano Lett. 12, 4372–4379 (2012).

    ADS  Google Scholar 

  29. 29

    Norris, D. J., Efros, A. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776–1779 (2008).

    ADS  Google Scholar 

  30. 30

    Chen, Y. et al. ‘Giant' multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008).

    Google Scholar 

  31. 31

    Brovelli, S. et al. Dual-color electroluminescence from dot-in-bulk nanocrystals. Nano Lett. 14, 486–494 (2013).

    ADS  Google Scholar 

  32. 32

    Galland, C. et al. Dynamic hole blockade yields two-color quantum and classical light from dot-in-bulk nanocrystals. Nano Lett. 13, 321–328 (2012).

    ADS  Google Scholar 

  33. 33

    Brovelli, S. et al. Nano-engineered electron–hole exchange interaction controls exciton dynamics in core–shell semiconductor nanocrystals. Nature Commun. 2, 280 (2011).

    ADS  Google Scholar 

  34. 34

    Zavelani-Rossi, M., Lupo, M. G., Tassone, F., Manna, L. & Lanzani, G. Suppression of biexciton Auger recombination in CdSe/CdS dot/rods: role of the electronic structure in the carrier dynamics. Nano Lett. 10, 3142–3150 (2010).

    ADS  Google Scholar 

  35. 35

    Rainó, G. et al. Probing the wave function delocalization in CdSe/CdS dot-in-rod nanocrystals by time- and temperature-resolved spectroscopy. ACS Nano 5, 4031–4036 (2011).

    Google Scholar 

  36. 36

    Cassette, E. et al. Colloidal CdSe/CdS dot-in-plate nanocrystals with 2D-polarized emission. ACS Nano 6, 6741–6750 (2012).

    Google Scholar 

  37. 37

    Borys, N. J., Walter, M. J., Huang, J., Talapin, D. V. & Lupton, J. M. The role of particle morphology in interfacial energy transfer in CdSe/CdS heterostructure nanocrystals. Science 330, 1371–1374 (2010).

    ADS  Google Scholar 

  38. 38

    Pal, B. N. et al. ‘Giant’ CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance. Nano Lett. 12, 331–336 (2011).

    ADS  Google Scholar 

  39. 39

    García-Santamaría, F. et al. Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core–shell interface. Nano Lett. 11, 687–693 (2011).

    ADS  Google Scholar 

  40. 40

    Javaux, C. et al. Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals. Nature Nanotech. 8, 206–212 (2013).

    ADS  Google Scholar 

  41. 41

    Wanwanichai, P. et al. Sheet-cast poly(methyl methacrylate): one-step (water) versus two-step (water–air) isothermal processes. Iran Polym. J. 14, 61–69 (2005).

    Google Scholar 

  42. 42

    Ma, Y. et al. Bulk synthesis of homogeneous and transparent bulk core/multishell quantum dots/PMMA nanocomposites with bright luminescence. J. Appl. Polym. Sci. 130, 1548–1553 (2013).

    Google Scholar 

  43. 43

    Pang, L., Shen, Y., Tetz, K. & Fainman, Y. PMMA quantum dots composites fabricated via use of pre-polymerization. Opt. Express 13, 44–49 (2005).

    ADS  Google Scholar 

  44. 44

    Kalyuzhny, G. & Murray, R. W. Ligand effects on optical properties of CdSe nanocrystals. J. Phys. Chem. B 109, 7012–7021 (2005).

    Google Scholar 

  45. 45

    Koike, Y., Tanio, N. & Ohtsuka, Y. Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses. Macromolecules 22, 1367–1373 (1989).

    ADS  Google Scholar 

Download references

Acknowledgements

S.B. and F.M. acknowledge support from the Cariplo Foundation (2012-0844), as do L.B. and R.S. (2010-0564). V.I.K., K.A.V. and R.V. were supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the Office of Basic Energy Sciences, Office of Science, US Department of Energy. S.B. thanks the European Community's Seventh Framework Programme (FP7/2007-2013; grant agreement no. 324603) for financial support. The authors thank M. Acciarri of the MIB-SOLAR laboratory for technical assistance in quantitative studies of solar concentration.

Author information

Affiliations

Authors

Contributions

S.B. and F.M. conceived the idea of large-area LSCs based on Stokes-shift-engineered QDs. R.V. synthesized the QDs. A.C., L.B. and R.S. fabricated the QD–polymer nanocomposites. S.B., F.M. and V.I.K. planned the experiments. S.B., F.M. and M.L. performed the spectroscopic experiments. K.A.V. performed the Monte-Carlo simulations. S.B., F.M. and V.I.K. wrote the paper in consultation with all the authors.

Corresponding authors

Correspondence to Francesco Meinardi or Victor I. Klimov or Sergio Brovelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1263 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meinardi, F., Colombo, A., Velizhanin, K. et al. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nature Photon 8, 392–399 (2014). https://doi.org/10.1038/nphoton.2014.54

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing